TABLE OF CONTENTS

2 Officers & Committees
3 Past Meetings
4 Past Secretaries, Treasurers & Recorders
5 New Members Elected in 2017
5 WVS Presidential Guest Lecturers
6 Educational Objectives & Methods, Disclosure Information
8 CME Credit Information
10 Acknowledgements
11 Schedule of Events
16 Instructions to Authors
17 Scientific Program
35 Scientific Session Abstracts
125 Constitution & Bylaws
141 2018 Membership
175 Member Update Form
OFFICERS AND COMMITTEES

OFFICERS

E. John Harris, MD President
York N. Hsiang, M.B., MHSc President-Elect
Steven Katz, MD Past President
Roy Fujitani MD Secretary-Treasurer
Michael Conte, MD Recorder
Larry W. Kraiss, MD Councilor

PROGRAM COMMITTEE

Wei Zhou, MD Chair
Stephen Murray, MD
Vincent Rowe, MD
Venita Chandra, MD
E. John Harris, MD President (Ex-Officio)
York N. Hsiang, M.B., MHSc President-Elect (Ex-Officio)
Roy Fujitani, MD Secretary-Treasurer (Ex-Officio)
Michael Conte, MD Recorder (Ex-Officio)

MEMBERSHIP COMMITTEE

Misty Humphries, MD
William Lee, MD
Sherene Shalhub, MD
Roy Fujitani, MD Secretary-Treasurer (Ex-Officio)

WVS REPRESENTATIVE TO THE SVS

Roy Fujitani, MD

LOCAL ARRANGEMENTS COMMITTEE

Mark Langsfeld, MD
PAST MEETINGS

1986 Dana Point, CA Organizing Committee
1987 Tucson, AZ W. Sterling Edwards, MD
1988 Monterey, CA Robert B. Rutherford, MD
1989 Kauai, Hawaii D. Eugene Strandness, Jr., MD
1990 Coronado, CA Ronald J. Stoney, MD
1991 Rancho Mirage, CA Victor M. Bernhard, MD
1992 Maui, Hawaii Wesley S. Moore, MD
1993 Sonoma, CA John M. Porter, MD
1994 Santa Barbara, CA Eugene F. Bernstein, MD
1995 Phoenix, AZ Robert L. Kistner, MD
1996 Dana Point, CA Jerry Goldstone, MD
1997 Lana‘I, Hawaii Richard L. Treiman, MD
1998 Whistler, BC, Canada Kaj H. Johansen, MD
1999 Lake Tahoe, NV Ralph B. Dilley, MD
2000 Coeur d’Alene, ID Peter F. Lawrence, MD
2001 Santa Fe, NM William C. Krupski, MD
2002 Newport Beach, CA Cornelius Olcott, IV, MD
2003 Kona, Hawaii Lloyd M. Taylor, Jr., MD
2004 Victoria, BC, Canada J. Dennis Baker, MD
2005 Park City, UT Gregory L. Moneta, MD
2006 La Jolla, CA George Andros, MD
2007 Kona, Hawaii Jeffrey L. Ballard, MD
2008 Napa, CA Alexander W. Clowes, MD
2009 Tucson, AZ Fred A. Weaver, MD
2010 Sunriver, OR Linda M. Reilly, MD
2011 Kauai, Hawaii Ronald L. Dalman, MD
2012 Park City, UT William J. Quinones-Baldrich, MD
2013 Jasper, AB, Canada Joseph L. Mills, Sr., MD
2014 Coronado, CA Peter A. Schneider, MD
2015 Wailea, Hawaii Larry Kraiss, MD
2016 Colorado Springs, CO William Pevec, MD
2017 Blaine, WA Steven Katz, MD
SECRETARY-TREASURERS

1986 - 1990 Wesley S. Moore, MD
1990 - 1993 J. Dennis Baker, MD
1993 - 1996 P. Michael McCart, MD
1996 - 1999 Gregory L. Moneta, MD
1999 - 2000 Terence M. Quigley, MD
2000 - 2002 Julie A. Freischlag, MD
2002 - 2005 Jeffrey L. Ballard, MD
2005 - 2008 Joseph L. Mills, MD
2008 - 2011 Larry W. Kraiss, MD
2011 - 2014 E. John Harris, Jr., MD
2014 - 2017 York N. Hsiang, M.B., MHSc
2017 - 2020 Roy Fujitani, MD

RECORDERS

1987 - 1989 Victor M. Bernhard, MD
1989 - 1992 Eugene F. Bernstein, MD
1992 - 1995 Peter F. Lawrence, MD
1995 - 1998 William C. Krupski, MD
1998 - 2001 Roy L. Tawes, MD
2001 - 2004 Ronald L. Dalman, MD
2004 - 2007 Peter A. Schneider, MD
2007 - 2010 William C. Pevec, MD
2010 - 2013 Steven Katz, MD
2013 - 2017 Benjamin W. Starnes, MD
2017 - 2020 Michael Conte, MD
NEW MEMBERS ELECTED IN 2017

- Sung Ham
- George Lee
- Rachel Lundgren
- John Wang

WVS PRESIDENTIAL GUEST LECTURERS

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Emerick Szilagyi</td>
<td>2004</td>
<td>None</td>
</tr>
<tr>
<td>1987</td>
<td>None</td>
<td>2005</td>
<td>Kevin G. Burnand</td>
</tr>
<tr>
<td>1988</td>
<td>James Stanley</td>
<td>2006</td>
<td>Jean Pierre Becquemin</td>
</tr>
<tr>
<td>1989</td>
<td>Brian Thiele</td>
<td>2007</td>
<td>None</td>
</tr>
<tr>
<td>1990</td>
<td>Frank Veith</td>
<td>2008</td>
<td>John H. N. Wolfe</td>
</tr>
<tr>
<td>1991</td>
<td>Allan Callow</td>
<td>2009</td>
<td>Jack L. Cronenwett</td>
</tr>
<tr>
<td>1992</td>
<td>Malcolm Perry</td>
<td>2010</td>
<td>None</td>
</tr>
<tr>
<td>1993</td>
<td>Norman Hertzer</td>
<td>2011</td>
<td>Germano Melissano</td>
</tr>
<tr>
<td>1994</td>
<td>Norman Browse</td>
<td>2012</td>
<td>Roy K. Greenberg</td>
</tr>
<tr>
<td>1995</td>
<td>Calvin Ernst</td>
<td>2013</td>
<td>Spence M. Taylor</td>
</tr>
<tr>
<td>1996</td>
<td>Anthony Whittemore</td>
<td>2014</td>
<td>Alan B. Lumsden</td>
</tr>
<tr>
<td>1997</td>
<td>None</td>
<td>2015</td>
<td>Peter Gloviczki</td>
</tr>
<tr>
<td>1998</td>
<td>None</td>
<td>2016</td>
<td>Alik Farber</td>
</tr>
<tr>
<td>1999</td>
<td>Jonathan Towne</td>
<td>2017</td>
<td>Bruce Perler</td>
</tr>
<tr>
<td>2001</td>
<td>William Hiatt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Thomas R. Russell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EDUCATIONAL OBJECTIVES & METHODS
The 33rd Annual Meeting of the Western Vascular Society was established with the specific purpose of advancing the art and science of vascular surgery, a goal that directly addresses competence, practice performance, and patient outcomes. The majority of the educational content includes scientific presentations by members, sponsored guests, and residents, selected by the WVS Program Committee.

OVERALL LEARNING OBJECTIVES
This activity is designed for: vascular surgeons, fellows, residents, and general surgeons who find the art and science of vascular surgery rapidly changing with respect to scientific discovery and surgical technology.

Reflecting this rapid advancement, the meeting will feature oral scientific presentations by members, sponsored guests, and residents. Special features this year are an afternoon session featuring a Spine Access Symposium and Mock Oral Examinations.

Upon completion of this course, participants will be able to:

• Discuss and describe procedural planning, surgical techniques and outcomes of endovascular repair of complex thoracoabdominal, pararenal, and ruptured aortic aneurysms.

• Discuss long term outcomes, mortality rates and predictors of mortality following repair of aortic aneurysm.

• Describe techniques to treat endoleak following endovascular aneurysm repair.

• Discuss the role and outcomes of endovascular repair of aortic dissection.

• Describe strategies to reduce spinal cord ischemia from endovascular repair of thoracic aortic aneurysm.

• Explain the relationship between patient frailty and outcomes following vascular surgical intervention.

GENERAL INFORMATION
GENERAL INFORMATION continued

- Describe techniques to optimize patient outcomes in the medical and surgical treatment of peripheral artery disease.
- Implement new techniques for the creation and maintenance of hemodialysis fistulas.
- Discuss new scientific insights into the biology of lipids, atherosclerotic plaque and peripheral artery disease.
- Describe new strategies to prevent venous thromboembolic disease.
- Discuss the diagnosis, management and outcomes of lower extremity arterial injury.
- Discuss techniques and outcomes of endarterectomy and stenting for symptomatic and asymptomatic carotid occlusive disease.
- Describe causes of finger ischemia in hospitalized patients.
- Recognize predictors of blood pressure response to renal artery stenting.
- Implement strategies to reduce radiation exposure during endovascular intervention.

EDUCATIONAL METHODS
Authored papers are supported by PowerPoint presentations or ePoster sessions. Full papers have a primary discussant and ample time provided for questions and discussion from the audience. Panel and group discussions are encouraged.

DISCLOSURE INFORMATION
In compliance with ACCME Accreditation Criteria, the American College of Surgeons, as the accredited provider of this activity, must ensure that anyone in a position to control the content of the educational activity has disclosed all relevant financial relationships with any commercial interest. All reported conflicts are managed by a designated official to ensure a bias-free presentation. Please see the insert to this program for the complete disclosure list.
CONTINUING MEDICAL EDUCATION INFORMATION

ACCREDITATION STATEMENT
This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the American College of Surgeons and Western Vascular Society. The American College of Surgeons is accredited by the ACCME to provide continuing medical education for physicians.

AMA PRA CATEGORY 1 CREDITS™
The American College of Surgeons designates this live activity for a maximum of 13.75 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Of the AMA PRA Category 1 Credits™ listed above, a maximum of 10.25 credits meet the requirements for Self-Assessment.
INSTRUCTIONS FOR CME CREDIT COLLECTION

To claim the 13.75 *AMA PRA Category 1 Credits™* please sign in each day at the registration desk and complete an evaluation form. At the end of the meeting each physician who returns the meeting evaluation form to the registration desk will be emailed a CME Certificate.

Alternatively, please feel welcome to use the online CME evaluation provided in the link sent to all attendees. Certificates will be sent to every attendee that completes this evaluation within ten days of the program.

To claim the 10.25 *AMA PRA Category 1 Credits™* for Self-Assessment please check your email for the link to the online self-assessment quiz and complete the quiz within 10 days of the program.
ACKNOWLEDGEMENTS

The Western Vascular Society wishes to thank the following companies for their educational grants in support of the 33rd Annual Meeting.

Cook Medical

Gore & Associates, Inc.

The Western Vascular Society wishes to thank the following companies for sponsorship support of the 33rd Annual Meeting.

Abbott Vascular

Cook Medical

Medtronic

Terumo Aortic

The Western Vascular Society wishes to thank the following companies for exhibiting in support of the 33rd Annual Meeting.

PLATINUM

Cook Medical

Gore & Associates

Medtronic

GOLD

Getinge Group

SILVER

Abbott Vascular

Boston Scientific

CR Bard

Endologix, Inc.

Penumbra

Janssen Pharmaceuticals, Inc.

Shockwave Medical

Silk Road Medical

Terumo Aortic

Vascular Insights
SCHEDULE OF EVENTS
SCHEDULE AT A GLANCE

SATURDAY, SEPTEMBER 22, 2018

12:00 PM - 8:00 PM Registration Open, Eldorado Concourse
1:00 PM - 4:00 PM Executive Council Meeting, Pinion Board Room
5:00 PM - 6:00 PM ePoster Competition, Ballroom Foyer
6:00 PM - 7:30 PM Welcome Reception with Exhibits, Ballroom A
7:30 PM - 9:00 PM Past Presidents Dinner - Invitation Only

SUNDAY, SEPTEMBER 23, 2018

6:00 AM - 2:00 PM Registration Open, Eldorado Concourse
7:00 AM - 1:00 PM Exhibits Open, Ballroom A
7:00 AM - 7:45 AM Continental Breakfast with Educational Exhibitors
 Ballroom A
7:45 AM - 8:00 AM Call to Order and Opening Announcements
 Ballroom BC
8:00 AM - 9:40 AM Scientific Session I, Ballroom BC
9:00 AM - 10:30 AM Companion Breakfast and Turquoise
 Presentation, Zia Room
9:40 AM - 10:00 AM Coffee Break, Ballroom A
10:00 AM - 12:00 PM Scientific Session II, Ballroom BC
12:00 PM - 1:00 PM Diversity and Leadership in Vascular Surgery
 Lunch with Panel Discussion - Gore
 Anasazi Room
1:30 PM Shuttle leaves for Towa Golf Course, Lobby
1:30 PM - 5:30 PM Golf Tournament
2:00 PM - 5:00 PM Museum Walking Tour, Lobby
 Preregistration required
5:00 PM - 7:30 PM Reception and Casual Dinner, Cava Santa Fe
MONDAY, SEPTEMBER 24, 2018

6:00 AM - 1:00 PM Registration, Eldorado Concourse
6:00 AM - 1:00 PM Exhibits Open, Ballroom A
6:30 AM - 7:30 AM Sponsored Breakfast Symposia - Abbott Vascular
 Anasazi Room
7:00 AM - 8:00 AM Continental Breakfast with Educational Exhibitors, Ballroom A
7:30 AM - 9:10 AM Scientific Session III, Ballroom B
9:10 AM - 9:30 AM Coffee Break, Ballroom A
9:30 AM - 10:50 AM Scientific Session IV, Ballroom B
10:50 AM - 11:20 AM Presidential Guest Lecture -
 Thomas Wakefield, M.D., Ballroom B
11:20 AM - 11:45 AM Society of Vascular Surgery Update -
 Kenneth Slaw, M.D., Ballroom B
11:45 - 12:15 PM WVS Business Meeting, Ballroom B
12:20 - 1:20 PM Sponsored Lunch Symposia - Cook Medical
 Anasazi Room
1:30 PM - 3:00 PM Spine Access Symposium, Ballroom B
3:00 PM - 5:00 PM Trainee Symposium: Mock Oral Board Examinations, Ballroom B
5:30 PM - 7:30 PM Reception in the Casa Espana
7:30 PM - 10:00 PM Western Vascular Society Presidential Patio Fiesta, Presidential Patio
TUESDAY, SEPTEMBER 25, 2018

6:30 AM - 1:00 PM Registration Open, Prefunction Foyer

6:30 AM - 7:30 AM Industry Sponsored Breakfast Symposium
Terumo Aortic, Anasazi Room

7:00 AM - 1:00 PM Exhibits Open, Ballroom A

7:00 AM - 9:00 AM Sunrise Stretch and Meditation Classes, Chapel

7:00 AM - 8:00 AM Continental Breakfast with
Educational Exhibitors, Ballroom A

7:30 AM - 9:00 AM Scientific Session V, Ballroom B

9:00 AM - 9:30 AM Coffee Break, Ballroom A

9:30 AM - 11:30 AM Scientific Session VI, Ballroom B

11:30 AM Meeting Adjourns and Presentation of Awards

WEDNESDAY, SEPTEMBER 26, 2018

6:30 AM Hot Air Balloon Rides Albuquerque
Preregistration required
INSTRUCTIONS TO AUTHORS

Authors presenting papers are reminded that the presentation of the paper shall be limited to the following:

FULL PRESENTATIONS
8 minutes presentation, 2 minutes invited discussant

MINI PRESENTATIONS
5 minutes presentation, 5 minute general discussion

POSTER PRESENTATIONS
3 minutes presentation, and 3 minutes discussion

ROBERT HYE MEMORIAL BEST RESIDENT PRESENTATIONS
8 minutes presentation, 2 minutes invited discussant

INVITED DISCUSSION
Two minutes and specifically critique the paper as presented. Visual aids may not be incorporated into the discussion. An electronic copy of the discussion is required to be submitted to the recorder.

AUDIO-VISUAL
Authors are to provide their presentation to the technician one (1) hour prior to the beginning of the session in which they are to present. C Sherman AV may be contacted for any technical challenges by calling 360-708-4226 or emailing cs@cshermanav.com.
INSTRUCTIONS TO AUTHORS continued

MANUSCRIPTS
Authors are REQUIRED to submit a manuscript of their presentation for possible publication in the Journal of Vascular Surgery Publications within one month of the Annual Meeting. The Editors of the Journal of Vascular Surgery Publications will determine the Journal in which accepted manuscripts will be published.

The guidelines for submission of your Manuscript(s) may be found on the Journal of Vascular Surgery Publications website www.editorialmanager.com/jvs. Please refer to the “Instructions for Authors.” Once the manuscript is submitted to the Journal by email, please send a confirmation of submission to Michael Conte, MD at Michael.Conte2@ucsf.edu.

The Annual Meeting Registration Desk will be located in the Eldorado Concourse, and open during the following hours:

- **Saturday, September 22**: 12:00 p.m. – 8:00 p.m.
- **Sunday, September 23**: 6:00 a.m. – 2:00 p.m.
- **Monday, September 24**: 6:00 a.m. – 1:00 p.m.
- **Tuesday, September 25**: 7:00 a.m. – 11:00 a.m.
SCIENTIFIC PROGRAM

SATURDAY, SEPTEMBER 22, 2018

1:00 – 4:00 p.m.
EXECUTIVE COUNCIL MEETING

5:00 – 6:00 p.m.
POSTER COMPETITION
(8 posters—3 min presentation/3 min discussion)

5:00 – 5:06 p.m.
P1 Preadmission Does Not Correlate with Fewer Complications, Reduced Failure to Rescue or Improved Survival in EVAR and OAAA Patients
Justin Inman, MD
University of California, San Francisco, CA, USA.

5:06 – 5:12 p.m.
P2 Endovascular Removal of a Balloon Expandable Superior Mesenteric Artery Stent
Jeniann A. Yi, MD
University of Colorado, Denver, CO, USA.

5:12 – 5:18 p.m.
P3 Utility of Open Forefoot Amputation in the Management of Patients with Critical Limb Ischemia
Ramsey S. Elsayed, MD
Keck School of Medicine, Los Angeles, CA, USA.

5:18 – 5:24 p.m.
P4 Initial Experience with the Bolton TREO Device for Fenestrated EVAR
Benjamin W. Starnes, MD
University of Washington, Seattle, WA, USA.
5:24 – 5:30 p.m.
P5 Traumatic Superior Mesenteric Artery Injuries: Analysis of Incidence, Morbidity and Mortality Compared to Other Visceral Arteries
Shelley Maithel, MD
University of California, Irvine, Orange, CA, USA.

5:30 – 5:36 p.m.
P6 Catheter-based Endovascular Interventions for Symptomatic Deep Vein Thrombosis in Children
Peter Lin, MD
Baylor College of Medicine, Houston, TX, USA.

5:36 – 5:42 p.m.
P7 Practice Patterns of Endovascular Interventions for Peripheral Arterial Disease in the Medicare Population
Rhusheet Patel, MD
UCLA, Schaeffer Center for Health Policy, Los Angeles, CA, USA.

5:42 – 5:48 p.m.
P8 Applicability of the Cook Inner Branched Arch Endograft
Christopher Burke, MD
University of Washington, Seattle, WA, USA.

*Best Poster Competition Winner will be awarded at the end of the meeting on Tuesday.

6:00 – 7:30 p.m.
WELCOME RECEPTION

7:30 p.m.
PAST PRESIDENTS DINNER (by invitation only)
SUNDAY, SEPTEMBER 23, 2018

7:00 a.m.
CONTINENTAL BREAKFAST WITH EDUCATIONAL EXHIBITORS

7:45 a.m.
Call to Order and Announcements
E. John Harris, MD, President WVS

8:00 – 9:40 a.m.
SCIENTIFIC SESSION I - PAD
Presiding: E. John Harris, MD, and Michael Conte, MD

8:00 – 8:20 a.m.
1. * Delayed Revascularization After a Trial of Conservative Therapy is Safe and Effective for Ischemic Wounds in a Multidisciplinary Setting
Joshua Gabel, MD
Loma Linda University, Loma Linda, CA, USA.
Discussant: Dr. Joseph Mills, Sr., MD

8:20 – 8:40 a.m.
2. * Lower Extremity Revascularization with Transmetatarsal Amputation Improves Healing and Reduces Major Amputation
Evan C. Werlin, MD
UCSF, San Francisco, CA, USA.
Discussant: Dr. Charles Anderson

8:40 – 9:00 a.m.
3. *Endovascular Reconstruction Offers Non-Inferior Outcomes at Reduced Cost Compared to Surgical Bypass for TASC-II D Aorto-Iliac Occlusive Disease
Joshua Gabel, MD
Loma Linda University, Loma Linda, CA, USA.
Discussant: Dr. Gale Tang
9:00 – 9:20 a.m.
4. * Impact of Physician Owned Office Based Laboratories on Physician Practice Patterns and Outcomes after Percutaneous Vascular Interventions for Peripheral Artery Disease
Nathan Itoga, MD
Stanford University Medical Center, Stanford, CA, USA.
Discussant: Dr. Peter Lawrence

9:20 – 9:40 a.m.
5. * Preoperative Testing Among Patients Undergoing Arteriovenous Fistula Surgery
Brian Beckord, MD
Harbor-UCLA Medical Center, Torrance, CA, USA.
Discussant: Dr. Eugene Zierler

9:40 – 10:00 a.m.
COFFEE BREAK WITH EDUCATIONAL EXHIBITORS

10:00 a.m. – 12:00 p.m.
SCIENTIFIC SESSION II - AORTIC
Presiding: E. John Harris, MD and Wei Zhou, MD

10:00 – 10:20 a.m.
6. * Late Graft Failure is Rare After EVAR Using the Zenith Stent-Graft: Fifteen-year Outcomes in a Cohort of High-Risk Patients
Joel L. Ramirez, MD
University of California, San Francisco, CA, USA.
Discussant: Dr. Rodney White

10:20 – 10:40 a.m.
7. * Lessons Learned from The Largest Cohort of Type 3 Endoleaks with the Endologix AFX Stent Graft
Arielle Lee, MD
University of California, San Diego, San Diego, CA, USA.
Discussant: Dr. George Lee
10:40 – 11:00 a.m.
8. * Duplex Ultrasonography is a Clinically Useful Modality for Surveillance of Renal Branch Grafts After Fenestrated Endovascular Aneurysm Repair
Kenneth Tran, MD
Stanford University Medical Center, Stanford, CA, USA.
Discussant: Dr. Gregory Landry

11:00 – 11:20 a.m.
Elizabeth L. George, MD
Stanford University Medical Center, Stanford, CA, USA.
Discussant: Dr. Karen Woo

11:20 – 11:40 a.m.
10. * A Reliable Method for Renal Volume Measurement and its Application in FEVAR
Jason R. Hurd, MD
University of Washington, Seattle, WA, USA.
Discussant: Dr. Omid Jazaeri

11:40 a.m. – 12:00 p.m.
Gregory A. Magee, MD, MSc
University of Southern California, Los Angeles, CA, USA.
Discussant: Dr. Stephen Cheng

12:00 – 1:00 p.m.
LEADERSHIP AND DIVERSITY IN VASCULAR SURGERY LUNCHEON - Anasazi Room

1:30 p.m.
Shuttle bus leaves for Towa Golf Course

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
2:00 p.m.
Museum Tour Group Meets in Lobby

6:00 p.m.
Reception at CAVA Santa Fe

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
MONDAY, SEPTEMBER 24, 2018

6:30 a.m. – 7:30 a.m.
INDUSTRY SPONSORED BREAKFAST SEMINAR
Endovascular Treatment of CLI:SFA & BTK Strategies

7:00 a.m. – 8:00 a.m.
CONTINENTAL BREAKFAST WITH EDUCATIONAL EXHIBITORS

7:30 – 9:10 a.m.
SCIENTIFIC SESSION III
Presiding: E. John Harris, MD and Stephen Murray, MD

7:30 – 7:50 a.m.
12. * The Effect of Combining Coronary Bypass with Carotid Endarterectomy in Patients with Unrevascularized Severe Coronary Disease
Linda J. Wang, MD, MBA
Massachusetts General Hospital, Boston, MA, USA.
Discussant: Dr. Niren Angle

7:50 – 8:10 a.m.
Ashton Lee, MD
Banner University Medical Center Tucson, Tucson, AZ, USA.
Discussant: Dr. Benjamin Brooke

8:10 – 8:30 a.m.
Amir A. Ghaffarian, MD
University of Utah School of Medicine, Salt Lake City, UT, USA.
Discussant: Dr. Misty Humphries

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
8:30 – 8:50 a.m.
15. * Surgical Management of Functional Popliteal Entrapment Syndrome in Athletes
Kedar S. Lavingia, MD
Stanford University Medical Center, Stanford, CA, USA.
Discussant: Dr. Hugh Gelabert

8:50 – 9:00 a.m.
16. * Factors Associated with Microembolization After Carotid Intervention
Joseph Sabat, MD, PHD
University of Arizona, Tucson, AZ, USA.

9:00 – 9:10 a.m.
17. Establishing a Carotid Artery Stenosis Disease Cohort for Comparative Effectiveness Research Using Natural Language Processing
Robert W. Chang, MD
Kaiser Permanente, South San Francisco, CA, USA.

9:10 – 9:30 a.m.
COFFEE BREAK WITH EDUCATIONAL EXHIBITORS

9:30 a.m. – 10:50 a.m.
SCIENTIFIC SESSION IV – DIALYSIS ACCESS
Presiding: E. John Harris, MD, and Roy Fujitani, MD

9:30 – 9:50 a.m.
18. Cost Effectiveness of Repeated Interventions on Failing Arteriovenous Fistula When is it Time to Start Over?
Benjamin S. Brooke, MD, PhD
University of Utah School of Medicine, Salt Lake City, UT, USA.
Discussant: Dr. Jason Faulds

9:50 – 10:10 a.m.
19 * LongTerm Durability of Oakes Salvage Procedure to Preserve Forearm Dialysis Access in Patients with Failed Brescia
Anahita Dua, MD. MS. MBA
Stanford University Medical Center, Stanford, CA, USA.
Discussant: Dr. Wayne Gradman
10:10 – 10:30 a.m.
20. *Arteriovenous Fistulas Recruited with Regional Anesthesia Have Comparable Functional Outcomes
Devin S. Zarkowsky, MD
University of California, San Francisco, CA, USA.
Discussant: Dr. Mark Langsfeld

10:30 – 10:50 a.m.
Timothy Copeland, MPP
UCLA, Los Angeles, CA, USA.
Discussant: Dr. Stephen Kubaska

10:50 – 11:20 a.m.
PRESIDENTIAL GUEST LECTURER
Thomas Wakefield, MD

11:20 – 11:45 a.m.
SOCIETY OF VASCULAR SURGERY UPDATE
Kenneth Slaw, MD

11:45 a.m. – 12:15 p.m.
WVS BUSINESS MEETING

12:20 p.m. – 1:20 p.m.
INDUSTRY SPONSORED LUNCH SEMINAR
Long Term Durability – Impact of Fellowship Training on Advancing Aortic Endovascular Repair

1:30 – 3:00 p.m.
SPINE ACCESS SYMPOSIUM

3:00 – 5:00 p.m.
MOCK ORAL BOARD EXAMS

5:30 – 7:30 p.m.
RECEPTION AT THE CASA ESPANA

7:30 p.m. – 10:00 p.m.
PRESIDENT’S BANQUET WITH FIESTA ENTERTAINMENT

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
TUESDAY, SEPTEMBER 25, 2018

6:30 a.m. – 7:30 a.m.
INDUSTRY SPONSORED BREAKFAST SEMINAR
Advanced TEVAR Therapy: Current and Future Pipeline

7:00 a.m.
CONTINENTAL BREAKFAST WITH EDUCATIONAL EXHIBITORS

7:30 – 9:00 a.m.
SCIENTIFIC SESSION V
Presiding: York Hsiang, MD, MHSc and Vincent Rowe, MD

7:30 – 7:50 a.m.
22. * Disease-based Observation Cohort Study of Patients with Thoracoabdominal Aortic Aneurysm
Chulhi Kang, MD,
University of Washington, Seattle, WA, USA.
Discussant: Dr. Linda Riley

7:50 – 8:10 a.m.
23. Fenestrated Endovascular Aortic Aneurysm Repair is Financially-Viable at a High-Volume Medical Center
Warren B. Chow, MD, MS
University of Washington, Seattle, WA, USA.
Discussant: Dr. Bruce Gewertz

8:10 – 8:30 a.m.
Jonathan C. Hong, MD, MHS
University of British Columbia, Vancouver, BC, Canada.
Discussant: Dr. Sherene Shalhub

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
8:30 – 8:50 a.m.
25. Management of Moderate Thoracic Blunt Aortic Injuries in Patients with Intracranial Hemorrhage
Elina Quiroga, MD, FACS
University of Washington, Seattle, WA, USA.
Discussant: Dr. Nii-Kbu Kabutey

8:50 – 9:00 a.m.
26. Association of Vascular Surgery Board of the American Board of Surgery Examination Performance with Clinical Outcomes: Experience Matters
Larry W. Kraiss, MD
University of Utah, Salt Lake City, UT, USA.

9:00 – 9:10 a.m.
27. Early Experience with the Octopus Endovascular Strategy in the Management of Thoracoabdominal Aneurysms
Anahita Dua, MD, MS, MBA
Stanford University Medical Center, Stanford, CA, USA.

9:10 – 9:20 a.m.
28. Integrated Residency is Associated with an Increase in Women Among Vascular Surgery Trainees
Susanna Shin, MD
University of Washington, Seattle, WA, USA.

9:20 – 9:40 a.m.
COFFEE BREAK WITH EDUCATIONAL EXHIBITORS

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
9:40 – 11:30 a.m.

SCIENTIFIC SESSION VI
Presiding: York Hsiang, MD, MHSc and Venita Chandra, MD, FACS

9:40 – 10:00 a.m.

29. * Experienced Operators Achieve Superior Primary Patency and Wound Complication Rates with Endoscopic Greater Saphenous Vein Harvest Compared to Open Harvest in Lower Extremity Bypasses
Matthew Kronick, MD
Oregon Health & Science University, Portland, OR, USA.
Discussant: Dr. Vincent Rowe

10:00 – 10:20 a.m.

30. Plant-Based Diet Reverses Vascular Endothelial Dysfunction in Patients with Peripheral Arterial Disease
Peter Lin, MD
California State University Los Angeles, Los Angeles, CA, USA.
Discussant: Dr. Warren Gasper

10:20 – 10:30 a.m.

31. Multi-vessel Tibial Revascularization Does Not Improve Outcomes in Patients with Critical Limb Ischemia
Kedar S. Lavingia, MD
Stanford University Medical Center, Stanford, CA, USA.

10:30 – 10:40 a.m.

32. Lower Extremity Revascularization (LER) in the Medicare Population: The Ongoing Rise of Office-Based Atherectomy Critical Limb Ischemia
Michael Conte, MD
University of California, San Francisco, CA, USA.

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
33. Factors Influencing Accuracy of Volume Flow Measurement in Dialysis Access Fistulas: Analysis Based on Duplex Ultrasound Simulation
R. Eugene Zierler, MD
University of Washington, Seattle, WA, USA.
Discussant: Dr. Eugene Lee

34. Comparison of Bovine Carotid Xenograft versus ePTFE Grafts for Forearm Loop Hemodialysis Access
Benjamin Colvard, MD
Stanford University Medical Center, Stanford, CA, USA.

35. Leukocyte Phenotype is Altered in Peripheral Arterial Disease
Thomas A. Sorrentino, MD
University of California, San Francisco, CA, USA.

36. Initial Open vs Endovascular Treatment and Subsequent Limb Loss After Primary Minor Amputation
Jonathan H. Lin, MD
University of California, Davis, Sacramento, CA, USA.

PRESENTATION OF ROBERT HYE MEMORIAL RESIDENT PRESENTATION AWARD

* Robert Hye Memorial Best Resident Presentation Award Competition Entry
SCIENTIFIC SESSION ABSTRACTS
Delayed Revascularization After a Trial Of Conservative Therapy is Safe and Effective for Ischemic Wounds in a Multidisciplinary Setting

Joshua Gabel¹, Isabella Possagnoli², Udochukwu Oyoyo¹, Ahmed Abou-zamzam Jr.¹, Theodore Teruya¹, Sharon Kiang¹, Vicki Bishop², Diana Eastridge², Christian Bianchi¹,².

¹Loma Linda University, Loma Linda, CA, USA, ²Veterans Affairs Loma Linda Healthcare System, Loma Linda, CA, USA.

Objectives: Our group has previously shown that a high percentage of ischemic wounds in patients with PAD heal with conservative therapy alone. However, some patients require delayed revascularization. Our goal was to evaluate wound healing and limb salvage among patients with ischemic wounds when revascularization was necessary after a failure of conservative therapy.

Methods: Patients with PAD and tissue loss were prospectively enrolled into our Prevention of Amputation in Veterans Everywhere (PAVE) program. Limbs were stratified based on perfusion evaluation and a validated pathway of care. Conservatively treated limbs that failed to demonstrate a positive wound trajectory underwent delayed revascularization. Rates of wound healing, recurrence, limb salvage, and survival were retrospectively compared between patients who underwent delayed vs. immediate revascularization by uni- and multivariate analysis, controlling for Wound, Ischemia, and foot Infection (WIfI) classification.

Results: Between January 2008 and December 2017, 855 patients were prospectively enrolled in our PAVE program. Of 236 limbs stratified to a conservative approach, 185 (78%) healed and 33 (14%) underwent delayed (mean 2.7 ± 2.6 months) revascularization. During this same period 203 limbs underwent immediate revascularization. Mean long-term follow-up (LTFU) was 41.4 ± 29.0 months. Delayed compared to immediate revascularization demonstrated similar rates of wound healing (67% vs. 58%, p=0.33), wound recurrence (24% vs. 19%, p=0.50), limb salvage (82% vs. 75%, p=0.39), and survival (55% vs. 51%, p=0.69). After adjustment for WIFi classification, delayed revascularization remained non-inferior to immediate revascularization for wound healing (OR 1.4; 95% CI, 0.6-3.1), recurrence (OR 0.8; 95% CI,
0.3-1.8), limb salvage (OR 0.7; 95% CI, 0.3-1.9) and survival (OR 0.2; 95% CI 0.6-2.5).

Conclusions: Patients who fail conservative therapy and undergo delayed revascularization achieve similar rates of wound healing and limb salvage compared to those undergoing immediate surgical intervention, independent of WIfI classification. A stratified approach to critical limb ischemia achieves acceptable clinical outcomes without introducing increased risk in patients who fail an initial attempt at conservative therapy.
Presentation #2

Lower Extremity Revascularization with Transmetatarsal Amputation Improves Healing and Reduces Major Amputation

UCSF, San Francisco, CA, USA.

Objectives: A transmetatarsal amputation (TMA) allows patients with forefoot wounds to maintain ambulatory function and preserve a sensate heel/ankle. However, healing after TMA is often compromised in older patients by peripheral artery disease (PAD). The aim of this study was to investigate the effect of lower extremity revascularization (LER) on TMA healing and prevention of major amputation.

Methods: A retrospective review of all patients who had a TMA at three centers of a multi-center vascular practice from 1/1/2008 to 12/31/2016. In 1/2012, a multi-disciplinary limb salvage team (MDLST) consisting of vascular surgeons and podiatrists was established. Data on demographics, procedural details and outcomes were collected.

Results: A total of 124 patients had 134 TMAs with a median follow-up of 1221d (IQR 730-1757). The mean age was 60.9 ± 11.5y, 81% were men, 87% had diabetes, 56% had PAD and 31% had coronary artery disease (CAD). 68% (91/134) of TMAs healed, 10% (14/134) had recurrent wounds and 22% (29/134) failed requiring above or below knee amputation (AKA/BKA). Patients with PAD/CAD had a significantly lower healing rate (51/84[61%] v. 40/50[80%], p=.021) and significantly higher AKA/BKA rate (24/84[29%] v. 5/50[10%], p=.012). LER was associated with significantly improved TMA healing rates (36/52[69%] v. 15/32[47%], p=.042). Open LER had a significantly higher healing rate (16/31[52%] v. 4/20[20%], p=.024) and lower AKA/BKA rate (2/31[6%] v. 9/22[41%], p=.002) than endovascular LER. By Kaplan-Meier analysis, the median time to healing was 295d (IQR 99-754). The median time to AKA/BKA was 1062d (IQR 471-1595). In a multivariable Cox model, LER was associated with a lower risk (HR=0.43, p=.039) of AKA/BKA and PAD/CAD was associated with a higher risk (HR 5.41, p=.001).
70% (94/134) of the TMAs were performed by the MDLST and there was an increase in TMA for WIFI stage 3/4 wounds (84/94[89%] v. 28/40[70%], p=.006). In a multivariable Cox model, there was no change in TMA healing or AKA/BKA rates despite the higher WIFI category.

Conclusions: TMA is a successful and durable procedure for patients with advanced foot wounds. While TMA healing is time- and labor-intensive, aggressive use of LER can achieve TMA healing and avoid major amputation in older patients with PAD.
Endovascular Reconstruction Offers Non-Inferior Outcomes at Reduced Cost Compared to Surgical Bypass for TASC-II D Aorto-Iliac Occlusive Disease

Loma Linda University, Loma Linda, CA, USA.

Objectives: To compare the clinical outcomes and cost of endovascular reconstruction of occlusive and near-occlusive disease of the aortic bifurcation to surgical bypass.

Methods: Thirty-three consecutive patients with symptomatic TASC-II D aortoiliac occlusive disease (AIOD) who underwent surgical bypass or endovascular reconstruction from 2012 to 2017 were retrospectively reviewed. Lesion characteristics, technical approach, survival, limb salvage, and patency were analyzed. Device, operating room, and length of stay costs were calculated based on rates provided by the Department of Veterans Affairs (VA) and compared between treatment groups.

Results: Nineteen patients at prohibitive risk for open surgery underwent endovascular reconstruction, while thirteen underwent surgical bypass. Kissing stent technique was used in all patients for reconstruction of the aortic bifurcation. The endovascular group had decreased operative time (157 vs 245 minutes, p=0.004), blood loss (273 vs 763 milliliters, p=0.005), and perioperative complications (5% vs 31%, p=0.045) compared to surgical bypass. At mean follow-up of 2.8 years, endovascular reconstruction compared to surgical bypass demonstrated non-inferior primary/primary-assisted patency (85% vs 85%, p=0.98), limb salvage (100% vs 92%, p=0.76), and survival (90% vs 85%, p=0.65). Endovascular device costs were $4,223 greater than surgical bypass (p<0.001), but with operating room cost $3,332 less than surgical bypass (p=0.001). Length of stay costs was $13,580 less for patients undergoing endovascular reconstruction compared to surgery (p<0.001) and led to an overall reduction of $11,706 in hospitalization costs in favor of endovascular reconstruction (p<0.001).
Conclusions: Patients with occlusive and near-occlusive disease of the aortic bifurcation treated with endovascular reconstruction achieve non-inferior outcomes of patency, limb-salvage, and survival compared to surgical bypass at a mean 2.8 years. Decreased operative and length of stay costs associated with endovascular reconstruction produced an $11,706 cost advantage relative to surgical bypass.
Impact of Physician Owned Office Based Laboratories on Physician Practice Patterns and Outcomes After Percutaneous Vascular Interventions for Peripheral Artery Disease

Nathan Itoga1, Laurence C. Baker1, Matthew W. Mell2.

1Stanford University Medical Center, Stanford, CA, USA, 2UC Davis, Sacramento, CA, USA.

Objectives: Percutaneous vascular interventions (PVI) for peripheral artery disease (PAD) have shifted from hospital-based setting (HBS) to physician owned office-based laboratories (OBLs). We sought to evaluate the changes of physician treatment decisions and patient outcomes after transitioning to OBLs.

Methods: We identified patients with PAD with PVI from 2006-2013 in a 20% Medicare sample, and identified physicians who transitioned from predominantly HBS to OBLs (switch physicians) and compared them to those who performed procedures primarily in the HBS (control physicians). Patient outcomes included procedure type (balloon vs. atherectomy vs. stent), re-intervention rates, major adverse limb events (MALE), hospitalizations, and mortality. We used a difference in difference model to control for time effects.

Results: The cohort comprised 290 switch physicians who treated 8,011 patients 4,373 prior to OBL and 3,638 patients after transitioning to OBL), and 3756 control physicians treating 53,629 patients (40,405 in the pre-period and 13,224 in the post-period). Patient demographics and indication for interventions are recorded in Table 1. Switch physicians were observed to increase atherectomy use from 24% to 27% after the switch; however, the increase was larger for control physicians (20 to 30%, P<.001; Table 2). Switching to OBL was independently associated with increased re-intervention rates at 30-days and 1-year (P<.001), decreases in hospitalization rates at 30 days and one year (P<.001), and similar 30-day and 1-year mortality compared with control physicians. Differences for MALE were not statistically significant when controlling for patient demographics; however, the 30-day and 1-year amputation rates decreased at a greater rate after switching to OBL.

Conclusions: Transition to OBLs was associated with lower amputation and hospitalization rates, at the expense of increased 30-day and 1-year re-
intervention rates after PVI. Further study is warranted to evaluate the financial implications of OBLs to justify or expand its current use.

Table 1. Patient demographics and procedure indication by switch and control physicians.

<table>
<thead>
<tr>
<th></th>
<th>Switch Physicians (n=290)</th>
<th>Control Physicians (n=3,756)</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n=8,011)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) ± SD</td>
<td>75.0 ± 9.6</td>
<td>75.23 ± 9.8</td>
<td>***</td>
</tr>
<tr>
<td>Male Gender</td>
<td>51.8%</td>
<td>50.7%</td>
<td>NS</td>
</tr>
<tr>
<td>Charlson Index ± SD</td>
<td>5.8 ± 3.3</td>
<td>6.1 ± 3.4</td>
<td>***</td>
</tr>
<tr>
<td>ESRD</td>
<td>10.6%</td>
<td>12.0%</td>
<td>**</td>
</tr>
<tr>
<td>RACE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td><0.2%</td>
<td><0.2%</td>
<td>***</td>
</tr>
<tr>
<td>White</td>
<td>84.7%</td>
<td>80.8%</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>11.3%</td>
<td>13.9%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.8%</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.6%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.8%</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>North American Native</td>
<td>0.7%</td>
<td><0.2%</td>
<td></td>
</tr>
<tr>
<td>Indication for Intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAD + wound</td>
<td>33.8%</td>
<td>35.2%</td>
<td>NS</td>
</tr>
<tr>
<td>ESRD - end stage renal disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† NS - P≥.05, * - P< .05, ** P<.01, *** P<.001

Table 2. Procedure type and patient outcomes by switch and control physicians, stratifying by period.

<table>
<thead>
<tr>
<th></th>
<th>Switch Physicians</th>
<th>Control Physicians</th>
<th>P-Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of First Intervention</td>
<td>Pre-Switch (n=4,573)</td>
<td>Post-Switch (n=3,638)</td>
<td>Pre-Period (n=40,405)</td>
</tr>
<tr>
<td>Balloon</td>
<td>22.5% vs. 23.2%NS</td>
<td>23.4% vs. 19.0%***</td>
<td><.001</td>
</tr>
<tr>
<td>Stent</td>
<td>53.2% vs. 49.6%</td>
<td>56.7% vs. 51.1%***</td>
<td>.32</td>
</tr>
<tr>
<td>Atherectomy</td>
<td>24.3% vs. 27.2%**</td>
<td>19.6% vs. 29.9%***</td>
<td><.001</td>
</tr>
<tr>
<td>Re-intervention Rates‡‡</td>
<td>30 - day</td>
<td>9.8% vs. 14.9%***</td>
<td>8.9% vs. 8.8%NS</td>
</tr>
<tr>
<td></td>
<td>1 - year</td>
<td>28.8% vs. 34.8%***</td>
<td>25.3% vs. 23.4%**</td>
</tr>
<tr>
<td>Atherectomy as subsequent procedure‡‡‡</td>
<td>30 - day</td>
<td>3.7% vs. 5.6%***</td>
<td>2.5% vs. 3.4%***</td>
</tr>
<tr>
<td></td>
<td>1 - year</td>
<td>10.6% vs. 13.4%***</td>
<td>8.3% vs. 9.8%***</td>
</tr>
<tr>
<td>MALE‡‡‡</td>
<td>30 - day</td>
<td>5.7% vs. 5.0%NS</td>
<td>5.7% vs. 5.0%**</td>
</tr>
<tr>
<td></td>
<td>1 - year</td>
<td>15.6% vs. 12.0%***</td>
<td>14.6% vs. 12.4%***</td>
</tr>
<tr>
<td>Above Ankle Amputation‡‡‡</td>
<td>30 - day</td>
<td>2.5% vs. 1.2%***</td>
<td>2.2% vs. 2.2%NS</td>
</tr>
<tr>
<td></td>
<td>1 - year</td>
<td>7.7% vs. 4.6%***</td>
<td>6.7% vs. 5.6%*</td>
</tr>
<tr>
<td>Hospitalization‡‡‡</td>
<td>30 - day</td>
<td>23.9% vs. 18.0%***</td>
<td>23.8% vs. 22.9%NS</td>
</tr>
<tr>
<td></td>
<td>1 - year</td>
<td>61.0% vs. 48.4%***</td>
<td>58.9% vs. 49.8%***</td>
</tr>
</tbody>
</table>

†: Determined by difference-in-difference analysis
‡: Adjusted for age, race, Charlson score, gender, wound, ‡procedure type, ‡‡re-interventions
NS: P≥.05; *: P< .05; **: P<.01; *** P<.001
Presentation #5
Preoperative Testing Among Patients Undergoing Arteriovenous Fistula Surgery

Brian Beckord1, Lobsang Marcia2, Sarah Abdulla1, Ashkan Moazzez1, Christine Tung1, Christian de Virgilio1.

1Harbor-UCLA Medical Center, Torrance, CA, USA, 2David Geffen School of Medicine, Los Angeles, CA, USA.

Objectives: The creation of an arteriovenous fistula (AVF) for hemodialysis access is a very low risk procedure. It is often time-sensitive, as avoidance of central venous catheters (CVC) and their complications is paramount. Thus, the role of Pre Anesthesia Testing (PAT) is debatable, particularly if it delays surgery for further work-up. We sought to determine the value and potential adverse impact of PAT.

Methods: A retrospective analysis of all AVF patients who had a delay in AVF surgery by PAT for further work-up, as compared to a randomly selected group of patients who were not delayed. Patients were tracked daily from the day of PAT for 6 months. Main outcome measures were need for CVC catheter intervention, emergency department (ED) visits for dialysis related reasons, and hospital visits for consultations/diagnostics.

Results: There were 51 patients who had AVF delayed by PAT, and 73 patients without delay. There was no significant difference between delayed and non-delayed groups when comparing age (p= 0.65), gender (p=0.33), the American Society of Anesthesiologist (ASA) classification (median 3 for both, p= 0.42), the Revised Cardiac Risk Index (RCRI) (median score of 2 for both, p= 0.12), or prevalence of CVC for hemodialysis at time of PAT (62% vs 72% p=0.25). In the delayed group, the median time from initial PAT evaluation to surgery was 90 days. Only 3/51 (5.88%) of the surgery delay group had a documented medical finding that prompted a change in management. In the 6 months following initial PAT, the delayed surgery group had a significantly higher average number of ER visits (0.47 vs 0.03; p<0.001), need for new or replaced CVC (31.9% vs 1.37%p<0.001), and an increase in general hospital visits (2.74 vs 0.34; p<0.001).
Conclusions: In patients undergoing AVF surgery for hemodialysis access, delaying surgery for additional preoperative evaluation is associated with an increase in ED visits, an increase in CVC related interventions, and an increase in general hospital visits as compared to those without surgery delay. Only a small minority of the delayed surgery group underwent meaningful interventions to optimize surgery. These findings suggest that delaying surgery for further evaluation may be detrimental.
Late Graft Failure is Rare After EVAR Using the Zenith Stent-Graft: Fifteen-year Outcomes in a Cohort of High-Risk Patients

University of California, San Francisco, San Francisco, CA, USA.

Objectives: Device-specific data on the long-term efficacy of endovascular aortic aneurysm repair (EVAR) is limited by the constant evolution of stent graft design. The Zenith bifurcated stent graft is the only one currently in use not to have undergone major structural modifications since its introduction. The purpose of this study is to report the long term outcomes of a single center experience of EVAR using the Zenith stent graft.

Methods: Retrospective analysis of 325 high-risk patients who underwent elective EVAR with Zenith stent grafts between 10/1998 and 12/2005 under a physician-sponsored investigational device exemption. Patient charts and death registries were reviewed to identify late graft failures and causes of death. Late graft failures occurring >30 days after the index procedure included: type I/III endoleaks; enlarging aneurysm sac requiring revision; limb kinking/occlusion, graft infection, renal artery occlusion, or aneurysm rupture.

Results: The mean age at treatment was 75.9±7.4 years and 300/325 (92%) were men. Mean aneurysm diameter was 60±9 mm. The median main body stent graft diameter was 28 mm (range: 22-32 mm). Over a mean follow-up time of 5.9±4.0 years, there were 6 (1.8%) aneurysm-related deaths caused by the following: 1 stent graft infection, 1 infection of a femoral-femoral bypass graft placed after limb occlusion, 1 infection of a stent graft placed to treat a type IB endoleak, and 3 aneurysm ruptures. There were 19 (5.8%) late graft failures occurring at an average of 4.6 years (range: 0.1 to 14.6 years) post-procedure (Table 1). Patients with late graft failure were more likely to have had impaired renal function (Cr ≥2 mg/dL) (21% vs 6%, p=.03) and less likely to have had cardiac disease (42% vs 67%, p=.04) at the time of the index procedure. There was no significant association between late graft failure and: age, sex, aneurysm size, stent graft diameter, diabetes, smoking, or lung disease. Kaplan-Meier (KM) estimated overall survival was 60% at 5 years, 29% at 10 years, and 12%
at 15 years (Figure 1). KM estimated freedom from aneurysm-related mortality was 98% at 5 years, 97% at 10 years, and 97% at 15 years.

Conclusions: Late failures and aneurysm-related death are rare after EVAR using the Zenith stent graft, especially in high-risk patients whose comorbidities diminish life expectancy.

Table 1 - Primary causes of late graft failure.

<table>
<thead>
<tr>
<th>Graft Failure</th>
<th>N=19</th>
<th>Time Since Operation (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal artery occlusion</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Limb kink without occlusion</td>
<td>1</td>
<td>4.0</td>
</tr>
<tr>
<td>Infected stent-graft</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Limb occlusion</td>
<td>2</td>
<td>0.1, 0.6</td>
</tr>
<tr>
<td>Aneurysm rupture</td>
<td>3</td>
<td>0.6, 6.1, 6.6</td>
</tr>
<tr>
<td>Type I endoleak</td>
<td>3</td>
<td>3.5, 7.9, 11.5</td>
</tr>
<tr>
<td>Enlarging aneurysm sac requiring graft revision</td>
<td>3</td>
<td>4.1, 5.3, 7.2</td>
</tr>
<tr>
<td>Type III endoleak</td>
<td>5</td>
<td>0.1, 1.5, 2.4, 8.6, 14.6</td>
</tr>
</tbody>
</table>
Presentation #7
Lessons Learned from the Largest Cohort of Type 3 Endoleaks with the Endologix AFX Stent Graft

Andrew Barleben¹,², Abid Mogannam¹, Erik Owens¹,², John S. Lane¹,², Arielle Lee¹.

¹UCSD, San Diego, CA, USA, ²VA San Diego, La Jolla, CA, USA.

Objectives: Our institution has noted a continual rise in the incidence of late graft failure by Type 3 endoleak (T3EL) with early generation AFX (Endologix, Irvine, CA) endografts. We also noted repeat T3ELs in these patients treated with bridging AFX grafts. Previous authors noted a much lower incidence of T3EL (0-5%), but high aneurysm related mortality (18%) when repairing T3ELs with bridging grafts. Failure rates may be due to significant aortic remodeling in this population.

Methods: We sought to further characterize this population by instituting a targeted campaign to improve follow-up in 107 patients who had EVAR with early generation AFX devices. We then analyzed clinical and radiographic data including index procedures, anatomic data and clinical follow-up between 2009 and 2018.

Results: Out of 107 patients with early generation AFX grafts, 26 developed T3EL (24.3%). CT scan follow-up was obtained in 63.1%. Complete endograft relining occurred in 22 patients. Indications were T3a EL (4) and T3b EL (18). Concomitant leaks included Type 1aEL (1), Type 1bEL (2) and migration (1). Complete endograft relining was performed with 100% technical success. After relining, all patients had resolution of T3EL and all associated endoleaks, on both angiogram and follow-up CT scan to date. Endografts used include Excluder (2), Zenith (1) and Ovation iX for our most recent 19 patients (86%). Average time to reline was 45.2 months (1.6 - 70.4 months) and average follow-up post relining was 13 months (1.0 - 41.8 months). Drastic changes were noted following relining in aortic diameter (-8 mm, -1.0 mm - -38.0 mm) and renal to aortic bifurcation lengths (-12 mm, -1.0 mm - -24.0 mm).

Conclusions: We have shown that, following initiation of a targeted follow-up campaign, the incidence of early Endologix AFX graft failure from T3EL is
significantly higher than previously reported (24.3%). Changes to device design have improved on this issue. These patients have significant aortic remodeling potentially contributing to their failure. Adopting a complete endograft relining approach appears to take advantage of alternate locations of fixation and seal and completely excludes the previously placed endograft, achieving durable mid-term outcomes while maintaining a minimally-invasive approach.
Duplex Ultrasonography is a Clinically Useful Modality for Surveillance of Renal Branch Grafts After Fenestrated Endovascular Aneurysm Repair

Kenneth Tran, Graeme Mcfarland, Michael Sgroi, Jason T. Lee.
Stanford University Medical Center, Stanford, CA, USA.

Objectives: The use of duplex ultrasound for surveillance after FEVAR is not well studied. Our objective was to further characterize normal and abnormal duplex findings in renal branch grafts after FEVAR.

Methods: We retrospectively reviewed a single center experience involving consecutive patients treated with the Cook ZFEN device. Post-operative imaging with CT-A was obtained at usual intervals. As experienced progressed, duplex ultrasound was obtained in a non-standardized protocol, particularly in patients with reduced renal function. Loss of renal patency was defined as occlusion or stenosis >50%.

Results: A total of 116 patients were treated with FEVAR, of which 60 (51.7%) had concurrent CT and renal duplex ultrasound images available for review. Six patients (10%) had limited ultrasound studies due to bowel gas and were excluded. This left a total of 94 renal stents placed in 54 patients with a mean follow-up of 23 months. Twelve cases of renal patency loss in 10 patients (9 stenoses, 3 occlusions) were found on CT, 11 (91.6%) of which had concurrent abnormalities found on ultrasonography. Stents with compression at the fenestration junction exhibited elevated mean PSVs compared to non-stenosed stents (349.2 vs 115.3 cm/s, p=.003). Stenosis in the most proximal portion of the stent (i.e. within the main body) showed no difference in proximal PSVs (86.0 vs 131.9 cm/s, p=.257), however showed significantly dampened PSVs in the mid (17.5 vs 109.9 cm/s, p=.027) and distal (19.0 vs 78.3 cm/s, p=.028) segments compared to non-stenosed stents. All occluded stents demonstrated no flow detection. Proximal PSV served as a strong classifier for junctional stenosis (AUC 0.98, Fig. 1). A combined criterion of proximal PSV >215cm/s or distal PSV <25cm/s resulted in a sensitivity of 91.6% and specificity of 85.3% for detecting patency loss. All stents underwent successful reintervention. Seven of ten (70%) patients had detectable >25% increase in serum creatinine associated with renal patency loss.
Conclusions: Duplex ultrasonography is a clinically useful modality for surveillance of renal branch grafts after FEVAR. Patterns of segmental velocity elevation (proximal PSV >215cm/s) and dampening in the distal renal indicate potential hemodynamic compromise and those patients should be considered for secondary intervention.

Fig. 1
Variation in Center-level Frailty Burden and its Impact on Long-term Survival in Patients Undergoing Repair for Abdominal Aortic Aneurysms

Elizabeth L. George¹, Kelly Blum¹, Amber W. Trickey¹, Benjamin Brooke², Larry Kraiss², Matthew W. Mell³, Philip Goodney⁴, Jason Johanning⁵, Jason Hockenberry⁶, Shipra Arya¹.

¹Stanford University Medical Center, Stanford, CA, USA, ²University of Utah, Salt Lake City, UT, USA, ³University of California - Davis, Sacramento, CA, USA, ⁴Dartmouth Hitchcock, Lebanon, NH, USA, ⁵University of Nebraska, Lincoln, NE, USA, ⁶Emory University, Atlanta, GA, USA.

Objectives: Frailty is increasingly recognized as a key determinate in predicting postoperative outcomes. Centers may see patients who are more frail, potentially accounting for poorer outcomes in hospital comparisons that may not be captured in risk adjustment. We aimed to evaluate the variability in frailty burden among centers in the Vascular Quality Initiative (VQI) database and determine the effect of frailty on long-term mortality in patients undergoing AAA repair.

Methods: Patients undergoing open and endovascular AAA repair (2003-2017) were identified. Patients with complete data on component variables of the validated Risk Analysis Index (RAI) and centers with >10 AAA repairs were included. VQI RAI characteristics are: sex, age, body mass index, renal failure, congestive heart failure, dyspnea, preoperative ambulation, functional status, and mental status. Frailty was defined as the top 10% of RAI scores (RAI ≥37). Center-level RAI differences were assessed by global F test of center ID fixed effects in linear regression. The relationship between patient frailty and survival was evaluated by hierarchical Cox proportional hazards regression with random intercept for center, controlling for race, insurance, AAA diameter, AAA case-mix, and year.

Results: A total of 20,657 patients with complete records from 190 centers were included. RAI scores ranged from 3 to 63 (mean 28, SD 6.3). RAI varied significantly across centers, with center mean range 22.6-31.8, and percentage of frail patients range 0-31.3% (F test p<0.001, Figure 1). In Kaplan-Meier analysis, frailty was associated with poor survival (p<0.001, Figure 2) and most of the risk varied in the first postoperative year. Frailty was independently
associated with long-term mortality (hazard ratio 3.0, 95% CI 2.7-3.3) after accounting for center-level variance.

Conclusions: There is considerable variability of preoperative frailty in AAA patients among centers. Adjusting for center level variation in frailty burden, frailty still had a significant association with long-term mortality. Routine measurement of frailty preoperatively by centers to identify high-risk patients and implementation of perioperative interventions may help mitigate procedural and long term mortality and improve shared-decision making regarding AAA repair.
Presentation #10

A Reliable Method for Renal Volume Measurement and its Application in FEVAR

Jason R. Hurd1, Xiyang Chen2, Billi Tatum1, Danielle Katsman1, Niten Singh1, R. Eugene Zierler1, Benjamin W. Starnes1.

1University of Washington, Seattle, WA, USA, 2Sichuan University Division of Vascular Surgery, Chengdu, China.

Objectives: Renal volume has been shown to decline in the sixth decade of life and beyond. We sought; 1) to assess the inter-rater reliability for manually measuring renal volume using computed tomography and 2) to assess changes in renal volume over time as it relates to Fenestrated EVAR (FEVAR).

Methods: This study was conducted as part of a physician-sponsored IDE (#NCT01538056).
1) 30 consecutive kidneys of pre-operative FEVAR subjects were randomly measured by two independent raters using manual segmentation and TeraRecon (Foster City, CA) software (Figure 1). Renal volumes were calculated and compared. Cohen’s Kappa was calculated for differences in renal volume of 1, 3, 5 and 10%.

2) Renal volumes were then recorded for 100 subjects undergoing FEVAR with follow up out to five years and then normalized by dividing the value by the subjects Body Surface Area (DuBois formula; BSA=(W0.425 x H0.725) x 0.007184). Kidneys were divided into three groups and two sub-groups. Group A kidneys were those that were fed by a renal artery that had no fenestration and no stent. Group B were those kidneys fed by an artery with a fenestration but no stent and Group C were those kidneys fed by renal arteries that were stented through a fenestration. Finally, Group C was further sub-divided into those kidneys that had additional accessory renal arteries that were covered by the stent graft (Group C.1) and those kidneys without accessory renal arteries (Group C.2).

Results: 1) Inter-rater reliability (kappa) for manual renal volume measurement was 0.19, 0.63, 0.84 and 1.00 for renal volume differences of 1, 3, 5, and 10% respectively. 2) There were 10 kidneys in Group A, 7 kidneys in Group B and 172 kidneys in Group C. Group C.1 included 11 kidneys and Group C.2 included 161 kidneys. Scatterplots comparing Groups A, B and C AND C.1 and C.2 are shown in Figure 2.
Conclusions: Manual renal volume measurements are highly reliable and reproducible to within a 5% difference between raters. Renal volume decreases over time, regardless of whether the renal artery is stented or not. It appears that renal volume does not decline as rapidly when renal arteries are stented as part of FEVAR. Coverage of accessory renal arteries appears safe and does not significantly lead to decline in renal volume.
Objectives: Treatment of Type B aortic dissections with thoracic endovascular aortic repair (TEVAR) has been adopted in many centers with the goal to cover the proximal entry tear. Coverage of the left subclavian artery (LSCA) is commonly required in order to achieve a dissection-free proximal seal zone. A novel thoracic single side-branched endograft (TSSB) device offers a potential off-the-shelf option to achieve total endovascular incorporation of LSCA during zone 2 TEVAR. The aim of this study was to determine what percentage of patients with Type B aortic dissection who require zone 2 TEVAR meet the anatomical requirements for this device.

Methods: All consecutive patients undergoing TEVAR for Type B aortic dissections at a single institution from 2006 to 2016 were evaluated. Three-dimensional centerline reconstruction of preoperative computed tomography angiography (CTA) was performed to identify the diameter of the aorta, distances between branch vessels, diameter of the target branch vessel, and the location of the primary entry tear. Only patients who require zone 2 TEVAR were included in the analysis. The primary outcome was percentage of patients that meet all anatomical requirements for TSSB. The specific requirements leading to non-suitability were also calculated.

Results: Eighty-seven patients who underwent TEVAR for TBAD were reviewed. Fifty-seven of 87 would have required zone 2 TEVAR. Indications for TEVAR were malperfusion (12), aneurysm (15), persistent pain (22), rupture (3), uncontrolled hypertension (5), and other (3). Mean follow-up was 19 months (range: 1-72 months). Only 17 patients (30%) met all the requirements for anatomic suitability (Fig. 1). The reasons for failing anatomic suitability were covered stent graft length proximal to the branch portal (61%), aortic diameter at the proximal seal zone (11%), left subclavian diameter (16%), left subclavian length to its first branch (14%), access vessel diameter (40%).
Conclusion Although the standard TSSB device can allow for a more proximal seal zone and eliminate the need for open aortic arch debranching, only 30% of patients with Type B dissection who require zone 2 TEVAR meet all the anatomic requirements for this device. The most common reason for failure of anatomic suitability is the proximity of the left carotid to the left subclavian origin.

![Diagram of number (%) of patients meeting criteria for TSSB device](image)
The Effect of Combining Coronary Bypass with Carotid Endarterectomy in Patients with Unrevascularized Severe Coronary Disease

Linda J. Wang1, Emel A. Ergul1, Jahan Mohebali1, Philip P. Goodney2, Virendra Patel3, Mark F. Conrad1, Matthew J. Eagleton1, W. Darrin Clouse1.

1Massachusetts General Hospital, Boston, MA, USA, 2Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA, 3Columbia University Medical Center, New York, NY, USA.

Objectives: Management of significant carotid stenosis in those with symptomatic coronary disease remains controversial. Staged and combined carotid endarterectomy (CEA) with coronary bypass (CABG) have been described. Yet, understanding of the additive risks of these approaches is poor. This study sought to assess outcomes in patients with clinically relevant coronary disease undergoing either isolated CEA (ICEA) or combined CEA-CABG (CCAB).

Methods: All CEA in the Vascular Quality Initiative (VQI) from 2003-2017 were reviewed. CCAB were identified as were ICEA in patients with unrevascularized stable angina, unstable angina, or myocardial infarction (MI) within 6 months of operation. CCAB were compared with ICEA as well as a risk-matched cohort of ICEA. Primary outcomes included 30-day stroke, death, and MI, and these as composite (SDM). Univariate analysis and logistic regression were performed.

Results: 4,042 patients were identified including 2,582 ICEA (64%) and 1,460 CCAB (36%). 61% were male, 91% were Caucasian, and 39% had symptomatic carotid disease. Overall stroke was 1.9%, death 1.8%, and SDM 4.9%. ICEA had higher rates of post-operative MI (1.9% v 0.9%, p=.01), but lower rates of stroke (1.5% v 2.7%, p=.01), death (1% v 3%, p=.001), and SDM (4.1% v 6.4%, p=.001). After regression, predictors of SDM were CHF (OR 1.8, 95%CI 1.3-2.5, p<.001), urgent operation (OR 1.4, 95%CI 1.01-2.0, p=.04), and CCAB (OR 1.4, 95%CI 1.1-1.9, p=.02). After propensity matching, ICEA continued to have higher rates of perioperative MI (2.6% v 1.0%, p=.01) and lower rates of death (1% v 3%, p=.001). However, there were no longer differences in stroke (2% v 2.8%, p=.21) or SDM (5.2% v 6.7%, p=.15). Within the matched cohort,
predictors of SDM included COPD (OR 1.7, 95%CI 1.2-2.5, p=.01), CHF (OR 1.6, 95%CI 1.05-2.4, p=.03), and symptomatic carotid disease (OR 1.5, 95%CI 1.04-2.2, p=.03). CCAB was not significant (OR 1.3, 95%CI 0.9-1.9, p=.14).

Conclusions: In patients with unrevascularized, clinically relevant coronary disease, CCAB reduces operative MI but increases risk of stroke and death. After risk adjustment, MI remains higher in ICEA, but differences in 30-day stroke and SDM between ICEA and CCAB are no longer appreciated. These data suggest CCAB is not inferior to staged risk of ICEA followed by coronary revascularization.
Presentation # 13
Carotid Stenosis: The Impact of Frailty Syndrome on Patient Outcomes

Ashton Lee, Viraj Pandit, Wei Zhou.

Banner University Medical Center Tucson, Tucson, AZ, USA.

Objectives: Frailty confers increased risk for morbidity and mortality after operative intervention. Intervention for carotid stenosis is associated with its share of risks. The aim of this study was to assess the impact of frailty on outcomes after carotid inventions, including both carotid endarterectomy (CEA) and carotid artery stenting (CAS).

Methods: We performed an 8-year (2005-2012) retrospective analysis of NSQIP including patients that underwent CEA or CAS for carotid artery stenosis. A modified frailty index (mFI) was calculated. Frail status was defined as: mFI≥0.27. Outcome measures were inpatient complications, mortality, failure to rescue, hospital length of stay, and 30-day readmissions. Multivariate regression analysis was performed.

Results: 37,875 patients were included with mean age 74.9±6.3 years, 95.7% had CEA while 4.3% had CAS. 27.3% patients were frail. 11.7% of patients had complications, 2.2% died, and 6.7% were readmitted after discharge. Frail patients had higher complication rate (23.5% vs. 7.2%, p<0.001), higher mortality (5.2% vs 1.1%, p=0.02), higher failure to rescue (12.1% vs 4.7%, p=0.02), longer hospital length of stay (3 [2-3] vs. 1 [1-2] days, p=0.02) and a higher 30-day readmission rate (14.9% vs. 3.7%, p=0.03) compared to the non-frail. On regression analysis after controlling for age, gender, albumin level, type of surgery, and ASA class, frail status was an independent predictor of complications, mortality, and FTR, and 30-d readmissions (Table 1). On sub-analysis of patients undergoing CAS, there was no association between frail status and complications (OR:1.5 [0.8-3.2]), mortality (R: 1.2 [0.6-2.7]), FTR (OR: 0.9 [0.4-2.3]), and 30-d readmission rates (OR: 1.1 [0.5-3.1]).

Conclusions: Frailty is associated with morbidity and mortality among patients undergoing surgical intervention for carotid stenosis. Frailty was not associated with adverse outcomes in patients undergoing CAS. Incorporating frailty status in the treatment algorithm (CEA vs CAS) may help improve patient outcome.
Table I: Multivariate Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% Confidence Interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complications</td>
<td>3.2</td>
<td>2.1-4.8</td>
<td>0.01</td>
</tr>
<tr>
<td>Mortality</td>
<td>2.1</td>
<td>1.6-3.7</td>
<td>0.01</td>
</tr>
<tr>
<td>FTR</td>
<td>2.9</td>
<td>2.2-4.9</td>
<td>0.01</td>
</tr>
<tr>
<td>30-day readmission</td>
<td>1.9</td>
<td>1.6-3.9</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Prognostic Implications of Diagnosing Frailty and Sarcopenia in Vascular Surgery Practice: Form Versus Function

University of Utah School of Medicine, Salt Lake City, UT, USA.

Objectives: Frailty and sarcopenia are related but independent conditions common in older patients that can be used to assess their ability to tolerate the stress of major vascular surgery. However, it is unclear whether frailty or sarcopenia is more predictive of surgical outcomes. We assessed the association between frailty and sarcopenia with long-term survival among patients undergoing surgical and non-surgical management of vascular disease.

Methods: We retrospectively reviewed all patients who underwent prospective frailty assessment during their vascular surgery clinic visit using the Clinical Frailty Scale between December 2015 and August 2017, who also underwent an abdominal CT scan within the prior 12-month period. The cross-sectional area (cm²) of skeletal muscle was measured on a single axial CT-image at the L3 vertebrae. Sarcopenia was defined using established criteria of <52.4 cm²/m² for males and <38.5 cm²/m² for females. After stratifying patients by frailty & sarcopenia diagnoses along with comorbidities, the association with all-cause mortality was analyzed using Kaplan Meier curves and Cox regression models.

Results: A total of 415 patients underwent both frailty and sarcopenia assessment, of which 112 (27%) only met sarcopenia criteria, 48 (12%) only met frailty criteria, 56 (13%) were both sarcopenic & frail, while 199 (48%) controls didn’t meet criteria for either condition. A vascular procedure was performed on 167 (40%) patients whereas 248 (60%) were managed non-operatively with a median (IQR) follow-up after CT imaging of 1.5 (1.1-2.2) years. Patients diagnosed with either sarcopenia or frailty were older (mean 65-yrs vs. 59-yrs; $P<0.01$) and more likely to be male (69% vs. 54%; $P<0.01$) when compared to control patients. Long-term survival was significantly decreased for patients diagnosed with either frailty alone or both frailty & sarcopenia who underwent both surgical (Figure A) and non-surgical management (Figure B). In multivariate regression models, frailty was the only independent variable (HR:
7.7, 95%CI: 3.2-18.7; P<0.001) that predicted mortality.

Conclusions: Although frailty and sarcopenia have both been used to predict long-term survival among vascular patients, our data indicate that frailty alone is the only independent predictor associated with mortality.
Surgical Management of Functional Popliteal Entrapment Syndrome in Athletes

Kedar S. Lavingia, Anahita Dua, Michael Fredericson, Jason T. Lee.

Stanford University Medical Center, Stanford, CA, USA.

Objectives: Functional popliteal artery entrapment syndrome (FPAES) is a rare overuse condition described in physically active individuals that can be limb or performance threatening if untreated. We utilized provocative CT-As to guide partial debulking of the anterolateral quadrant of the medial head of the gastrocnemius muscle and reviewed outcomes of this technique in athletes.

Methods: Athletes referred with symptoms of FPAES underwent CT-A with provocative plantar and dorsi-flexion to confirm compression. Surgery consisted of a posterior approach exposure, adhesiolysis, arterial side branch ligation, and partial excision of the gastrocnemius muscle compressing the artery with or without fasciotomies.

Results: 36 athletes (mean age 24 years, 53% female) had a total of 56 limbs treated. Prior fasciotomies had already been performed in 31% of patients for chronic compartment syndrome. Sports involved included running (39%), soccer (28%), triathlete (8%), basketball (6%), gymnastics (3%), lacrosse (3%), diving (3%), tennis (3%), rugby (3%), water polo (3%), and skiing (3%). Bilateral symptoms were present in 27 (75%), but only 20/36 (56%) underwent bilateral surgery. Mean amount of gastrocnemius muscle removed was 6.8 cm³. Six patients (17%) also underwent vascular reconstruction along with debulking due to arterial stenosis/occlusion at presentation. No nerve or vascular complications were noted, although two patients had wound/seroma complications (6%). At latest f/u (mean 16mo), six patients (17%) reported recurrence of symptoms. 25/30 (83%) of athletes not undergoing vascular reconstruction reported full return to their preoperative competitive level of sport, while only 3/6 (50%) needing bypass returned to sport (p=.05).

Conclusions: Over three-fourths of athletes limited by FPAES are able to return to prior competitive sport performance after fasciotomy and debulking of the anterolateral quadrant of the medial gastrocnemius. Need for arterial
reconstruction significantly impacts future ability to return to sport, and recognizing symptoms early in this highly specialized cohort is important in improving outcomes.
Factors Associated with Microembolization After Carotid Intervention

Joseph Sabat, Tze-Woei Tan, Craig Weinkauf, Theodore Trouard, Gloria Guzman, Wei Zhou.

University of Arizona, Tucson, AZ, USA.

Objectives: Microembolization after carotid artery stenting (CAS) and endarterectomy (CEA) has been documented and may confer risk for neurocognitive impairment. Patients undergoing stenting are known to be at higher risk for microembolization. In this prospective cohort study we compare the microembolization rates for patients undergoing CAS and CEA and patient and perioperative characteristics that may be associated with microembolization.

Methods: Patients undergoing carotid artery stenting and endarterectomy were prospectively recruited under local IRB approval from an academic medical center. All patients also received 3T brain magnetic resonance imaging with a diffusion-weighted imaging (DWI) sequence preoperatively and within 48 hours postoperatively to identify procedure-related new embolic lesions. Preoperative, postoperative, procedural factors, and plaque characteristics were collected. Factors were tested for statistical significance with logistic regression.

Results: 202 patients were enrolled in the study. 107 underwent CAS and 95 underwent CEA. Patients undergoing CAS were more likely to have microemboli than patients undergoing CEA (78% v. 27% p<.05). For patients undergoing CAS, patency of the external carotid artery (OR 11.4 [1.11, 117.6] p =0.04), lesion calcification (OR 5.68 [1.12, 28.79] p = 0.04), and lesion length (OR 0.29 [0.08, 1.01] p=0.05) were all found to be independent risk factors for postoperative embolization. These factors did not confer increased risk to patients undergoing CEA.
Conclusions: Patients undergoing CAS are at higher risk for postoperative embolization. The risk for postoperative embolization is related to the length of the lesion and calcification. Identifying the preoperative risk factors may help to guide patient selection and, thereby, reduce embolization-related neurocognitive impairment. Further work to understand how microembolization affects neurocognitive impairment is also underway.
Establishing a Carotid Artery Stenosis Disease Cohort for Comparative Effectiveness Research Using Natural Language Processing

Robert W. Chang¹, Lue-Yen Tucker², Kara A. Rothenberg³, Andrew L. Avins², Hui C. Kuang⁴, Rishad M. Faruqi⁵, Bradley B. Hill⁵, Mai N. Nguyen-Huynh²,⁶

¹Department of Vascular Surgery, Kaiser Permanente, South San Francisco, CA, USA, ²Division of Research, Kaiser Permanente, Oakland, CA, USA, ³University of California San Francisco - East Bay, Oakland, CA, USA, ⁴Department of Vascular Surgery, Kaiser Permanente, San Francisco, CA, USA, ⁵Department of Vascular Surgery, Kaiser Permanente, Santa Clara, CA, USA, ⁶Department of Neurology, Kaiser Permanente, Walnut Creek, CA, USA.

Objectives: Investigation of asymptomatic carotid stenosis treatment is hindered by the lack of a contemporary population-based disease cohort. We describe the use of natural language processing (NLP) to identify stenosis in patients undergoing carotid imaging.

Methods: Adult patients undergoing carotid imaging between 2008-2012 in a large integrated health care system were identified. An NLP process was developed to characterize carotid stenosis according to Society of Radiologists in Ultrasound guidelines. The resulting algorithm assessed text descriptors to categorize normal, moderate and severe stenosis as well as occlusion in both carotid ultrasound (US) and axial imaging (computed tomography and magnetic resonance angiography [CTA/MRA]). For US reports, internal carotid artery systolic and diastolic velocities and velocity ratios were assessed and matched for laterality to supplement accuracy. All abnormal studies and a random sample of normal studies were manually reviewed for confirmation. Sensitivity, positive predictive value (PPV) and prevalence were calculated.

Results: A total of 95,880 qualifying index studies (76,249 US and 19,631 CTA/MRA) were identified among 94,804 patients including 1,061 patients who underwent multiple studies on the same day. During follow-up through 2017, 30% of these patients underwent 60,672 additional studies. Overall, 16,830 diseased carotid artery imaging studies were identified with 5,349 (31.8%) exhibiting bilateral disease. This resulted in a laterality-specific cohort with 13,381 moderate, 5,177 severe, and 3,619 occluded arteries. For studies of
normal arteries, the NLP algorithm showed excellent performance with a PPV of 99% for both US and CTA/MRA. After review of 1.6% of random samples, we excluded 72,563 studies without further review. PPV/Sensitivity to identify an abnormal artery with correct laterality in the CTA/MRA and US samples were 61%/96% and 79%/95%, respectively.

Conclusions: Use of NLP to detect carotid disease can result in accurate lesion identification with substantially reduced need for manual review. The resulting cohort allows for efficient research and holds promise for similar reporting in other vascular diseases.
Cost Effectiveness of Repeated Interventions on Failing Arteriovenous Fistulas: When is it Time to Start Over?

University of Utah School of Medicine, Salt Lake City, UT, USA.

Objectives: Arteriovenous fistulas (AVFs) used for hemodialysis commonly undergo multiple percutaneous and open interventions to maintain function patency, but it is unclear if this strategy is cost effective. The aim of this study was to evaluate the cost effectiveness of performing repeated interventions versus starting a new AVF.

Methods: We reviewed all patients with mature radiocephalic, brachiocephalic, and brachiobasilic AVFs at a single academic institution between 2000 to 2016 and assessed open and percutaneous interventions to maintain functional patency after the fistula was created. These data were used to parameterize a Markov simulation model to determine the cost-effectiveness for performing an open or percutaneous intervention vs. creating an AV fistula location at a new anatomic location. This model compared strategies of creating a new AVF after the 1st to 4th reintervention within a 1-year time window, with the reference being creation of a new AVF on the 4th reintervention. We used this model to calculate incremental cost-effectiveness ratios (ICERs) using 2016 costs from Medicare’s payer-perspective per quality-adjusted life-year (QALY) gained.

Results: A total of 720 mature AVFs were created during the 15-year period, and 283 (39%) underwent at least one intervention to maintain functional patency, with the median (IQR) time to first re-intervention of 12.6 (10-17) months. For the strategies of creating a new AVF after the 1st versus the 4th reintervention, costs ranged from $672-846 for open procedures and $172-$846 for percutaneous procedures (Table 1). The ICERs for open interventions on failing AVFs were $154,273/QALY after the 1st re-intervention and $59,917/QALY after the 2nd re-intervention but creating a new AVF after the 3rd open re-intervention was dominated by other strategy and not cost effective. The ICERs for percutaneous interventions on failing AVFs ranged from $574,494/QALY after the 1st re-intervention to $203,946/QALY after 3rd re-intervention (Table 1).
Conclusions: While the effectiveness of performing percutaneous interventions on failing AVFs diminishes following each re-intervention, they are nevertheless less costly than creating a new AVF. In comparison, our data shows that creating a new AVF is cost-effective after the 2nd open re-intervention procedure.

Table 1 - Calculation of incremental cost-effectiveness ratios (ICERs) using Medicare costs per quality-adjusted life year (QALY)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost</th>
<th>QALYs</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Reintervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New AV fistula on the 4th reintervention</td>
<td>$672</td>
<td>0.5149</td>
<td></td>
</tr>
<tr>
<td>New AV fistula on the 3rd reintervention</td>
<td>$692</td>
<td>0.5153</td>
<td>Dominated</td>
</tr>
<tr>
<td>New AV fistula on the 2nd reintervention</td>
<td>$728</td>
<td>0.5159</td>
<td>$59,917</td>
</tr>
<tr>
<td>New AV fistula on the 1st reintervention</td>
<td>$846</td>
<td>0.5167</td>
<td>$154,273</td>
</tr>
<tr>
<td>Percutaneous Reintervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New AV fistula on the 4th reintervention</td>
<td>$172</td>
<td>0.5149</td>
<td></td>
</tr>
<tr>
<td>New AV fistula on the 3rd reintervention</td>
<td>$248</td>
<td>0.5153</td>
<td>$203,946</td>
</tr>
<tr>
<td>New AV fistula on the 2nd reintervention</td>
<td>$404</td>
<td>0.5159</td>
<td>$260,333</td>
</tr>
<tr>
<td>New AV fistula on the 1st reintervention</td>
<td>$846</td>
<td>0.5167</td>
<td>$574,494</td>
</tr>
</tbody>
</table>
Presentation # 19
Long Term Durability of Oakes Salvage Procedure to Preserve Forearm Dialysis Access in Patients with Failed Brescia

Anahita Dua, Kara Rothenberg, Kedar Lavingia, Vy T. Ho, David Oakes, Ehab Sorial, Manuel Garcia-Toca.

Stanford University Medical Center, Stanford, CA, USA.

Objectives: In 2002, Oakes and colleagues described a novel procedure designed to salvage the distal cephalic venous outflow of a Brescia by placing a prosthetic graft between the brachial artery in the antecubital space and the cephalic vein at the wrist allowing for continued utilization of the wrist access. This study aimed to determine the long term primary, primary assisted and secondary patency rates of the brachial to distal cephalic vein Oakes procedure.

Methods: All patients who underwent the Oakes procedure from 2008 to 2012 at a single institution were included. Datapoints included demographic information, date of Brescia placement, date of Oakes procedure, days to intervention, type of intervention, number of interventions, and infection rates. Statistical analysis included descriptive statistics.

Results: Over the 5 year study period, 14 patients were identified who underwent the Oakes procedure of which 7 (50%) were female. The average age was 55.7 years (range 38-73). All patients had a previous placed Brescia that was not suitable for dialysis but was patent. The average number of days to placement of an Oakes brachial to distal cephalic graft was 396 (range 119-1167) days. 71% (10) of patients underwent an intervention to maintain the graft of which 50% (5) underwent an angioplasty and 50% (5) had a thrombectomy/revision procedure. The average number of days to first intervention was 367.3 (range 21-1048) from Oakes placement. Of this cohort, 30% (3) of patients had a second intervention of which 1 (33%) was an angioplasty and 2 were revisions (66%). One patient has a 3rd and a 4th intervention at 39 days and 74 days respectively that were both angioplasties. The overall number of days the Oakes procedure remained usable from placement was 843.6 (range 21-3790) days or 2.3 years. There were no deaths attributable to the fistula procedure nor were there any infections reported in this cohort.
Conclusions: This study concluded that the Oakes salvage procedure, by utilizing the venous outflow of the Brescia, may extend the utilization of the distal dialysis access site by 2.3 years without increasing infection and is hence a durable solution that should be consider in patients requiring dialysis access.
Arteriovenous Fistulas Recruited with Regional Anesthesia Have Comparable Functional Outcomes

Devin S. Zarkowsky¹, Bian Wu¹, Justin Inman¹, Andrew T. Gray¹,², Adam Z. Oskowitz¹,², Shant M. Vartanian¹,².

¹University of California, San Francisco, San Francisco, CA, USA, ²Zuckerberg San Francisco General Hospital, San Francisco, CA, USA.

Objectives: Regional anesthesia induced vasodilation increases the proportion of patients with venous anatomy suitable for an arteriovenous fistula (AVF). The functional outcomes of AVF initially small for size on preoperative Duplex vein mapping (2.4mm) that are recruited under regional anesthesia have not been clearly defined. We aimed to evaluate re-intervention rates and functional outcomes of AVF recruited after induction of regional anesthesia.

Methods: A prospectively maintained quality improvement database from a single institution was queried for patients that had dialysis access created under regional anesthesia. We compared AVF created according to the original surgical plan (OSP, pre-operative minimum vein diameter > 2.5mm) to AVF recruited with regional anesthesia (RWR, pre-operative minimum vein diameter 2.4 mm). Endpoints included complication rates, re-intervention rates and functional outcomes at 6 months. Comparisons were performed using Chi-square tests.

Results: Between July 2014 and October 2017, 208 dialysis access cases were performed under regional anesthesia. Excluding grafts, revisions, patients with previous ipsilateral AVF and those without preoperative ultrasound vein mapping, 135 patients were included in our analysis. Induction of regional anesthesia with intraoperative Duplex ultrasound allowed for a change in surgical plan in 55/135 (42%) patients (RWR), including 31 patients originally scheduled for AVG (mean preoperative distal upper arm cephalic vein diameter 1.3mm, SD 0.9mm) who were converted to an AVF (12 brachiobasilic [BB], 11 brachiocephalic [BC] and 8 radiocephalic [RC]). The remainder of RWR included 13 patients scheduled for BB who were converted to BC or RC, and 11 patients scheduled for BC that converted to RC. Comparing OSP vs. RWR, there were no differences in re-intervention rates (30% vs. 22%, p = .33) or
functional outcomes at 6 months (60% vs. 65% used on HD, p = .58 and 13% vs. 9% failed, p = .59).

Conclusions: In this series, regional anesthesia increased the proportion of patients who underwent AVF creation without compromising functional outcomes. Routine use of regional anesthesia in access surgery could have significant implications in meeting national guidelines for autogenous access in the prevalent HD population.
Presentation # 21

Outcomes of Hemodialysis Vascular Access in Patients Initiating Dialysis with a Tunneled Catheter

Timothy Copeland, Peter Lawrence, Karen Woo.

UCLA, Los Angeles, CA, USA.

Objectives: To determine factors that influence time to removal of tunneled hemodialysis catheter (THC), probability of repeat vascular access creation and time to repeat vascular access.

Methods: The Optum Clininformatics database, which contains claims from a large managed care organization, from 2011 to 2016 was queried for patients who initiated hemodialysis with a THC. Time from initial arteriovenous fistula (AVF)/graft (AVG) to THC removal and time to repeat AVF/AVG were analyzed using cox proportional hazards. Multivariate models included age, sex, race, diabetes, cardiac arrhythmia, congestive heart failure, peripheral vascular disease and obesity as covariates.

Results: 8355 vascular access met the inclusion criteria: 6648 (77%) AVF and 1940 (23%) AVG. Median follow-up was 424 days (range 1-2097). Patients undergoing AVF were younger, more likely to be male and White (Table). At 90 days, 20.3% (95% CI 19.3%, 20.3%) of AVF vs 56% (95% CI 53.7%, 58.4%) of AVG had their THC removed. At 180 days, 56.7% (95%CI 55.4%, 58.1%) of AVF vs 68.4% (95%CI 66.1%, 70.6%) of AVG had their THC removed. By day 315, 74% of patients in both AVG and AVG had their THC removed. Multivariate analysis demonstrated a significant interaction between vascular access type and age≥70 (P<0.001). In the age<70 group, patients who underwent AVG had a THC removal rate 46% higher than patients who underwent AVF. In the age≥70 group, patients who underwent AVG had a THC removal rate 88% higher than patients who underwent AVF. 1982 (23.7%) patients underwent a second vascular access. Multivariate analysis demonstrated AVG vs AVF (OR 0.70, 95%CI 0.61, 0.81) and age ≥70 vs <70 (OR 0.87, 95%CI 0.78, 0.98) were associated with a lower odds of second access. In patients who underwent a second access, multivariate analysis demonstrated initial AVG was associated with longer time to second access (HR 0.60, 95% CI 0.54, 0.68).
Conclusions: Creation of AVG vs AVF significantly decreased the time to THC removal in dialysis-dependent patients, with a larger difference in patients aged ≥70 vs <70. Initial AVG was associated with lower odds of second access and longer time to second access in those who underwent second access. These results contradict the dictum of “Fistula First” and support the judicious use of AVG in achieving the more recent shift towards “Catheter Last”.

Table - Demographics by Access Type

<table>
<thead>
<tr>
<th></th>
<th>Fistula (%)</th>
<th>Graft (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=6486</td>
<td>n=1869</td>
<td></td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>66.2 (13)</td>
<td>69 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age≥70</td>
<td>2979 (46)</td>
<td>1028 (55)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>3920 (60)</td>
<td>811 (44)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Asian</td>
<td>216 (3)</td>
<td>51 (3)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1586 (24)</td>
<td>677 (36)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>859 (13)</td>
<td>192 (10)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>3663 (56)</td>
<td>915 (49)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>168 (3)</td>
<td>28 (1)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>5257 (81)</td>
<td>1565 (84)</td>
<td>0.001</td>
</tr>
<tr>
<td>Cardiac Arrhythmia</td>
<td>4688 (72)</td>
<td>1400 (75)</td>
<td>0.13</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>5021 (77)</td>
<td>1480 (79)</td>
<td>0.073</td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>4406 (68)</td>
<td>1322 (71)</td>
<td>0.011</td>
</tr>
<tr>
<td>Obesity</td>
<td>2596 (40)</td>
<td>694 (37)</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Disease-based Observation Cohort Study of Patients with Thoracoabdominal Aortic Aneurysm

Chulhi Kang, Matthew A. Bartek, Sherene Shalhub, Derek P. Nathan, Matthew P. Sweet.

University of Washington, Seattle, WA, USA.

Objectives: Current understanding of thoracoabdominal aortic aneurysms (TAAA) is limited to case series and administrative data describing patients selected to undergo surgical repair. Little is known about the overall cohort of patients with TAAA, specifically those not selected for repair. The purpose of this study is to describe a disease-based cohort of patients with TAAA.

Methods: An academic multi-hospital institutional database was screened by diagnosis codes for TAAA from 2009 to 2017 using the International Classification of Diseases (ICD) versions 9 and 10. Diagnosis was then confirmed or rejected by chart review and the CT finding of aneurysmal degeneration > 3.2 cm of the paravisceral aorta in continuity with aneurysmal aorta meeting standard criteria for repair. Patients under age 18 and those with mycotic aneurysm were excluded. Patients underwent four broad categories of repair: (1) Open, (2) Endovascular with branched grafts, (3) Hybrid, defined as visceral debranching followed by TEVAR, and (4) Incomplete repair in which the paravisceral segment was intentionally left unaddressed. The primary outcome measure for those receiving an operation was a composite measure of “good” outcome defined as survival at 1 year, return to pre-operative functional status, and freedom from permanent loss of organ system function.

Results: 406 subjects met the inclusion criteria. Demographic data and composite “good” outcomes are reported in Table 1. Survival estimates are reported in Figure A. 192 patients (47%) were deemed ineligible for or declined treatment. Reintervention was common and occurred at a significantly higher rate in the hybrid group compared to other groups (rates for hybrid, endovascular, partial, and open were 46%, 28%, 26%, and 18%, respectively).

Conclusions: This inclusive cohort study shows that nearly half of patients with TAAA do not undergo repair despite access to all treatment options. This suggests that data from operated case series are achieved in highly selected cohorts and do not reflect overall outcomes. Among those receiving...
intervention, similar outcomes are achieved with different techniques in appropriately selected patients. Survival benefit was realized over a 30-month period in all operative groups except in the hybrid group compared to nonoperative patients.

Figure 1. Kaplan-Meier survival of TAAA patients by group.

Table 1. Key demographics and outcomes of thoracoabdominal aortic aneurysm (TAAA) patients

<table>
<thead>
<tr>
<th>Operation type</th>
<th>Open (N=50)</th>
<th>Endovascular (68)</th>
<th>Hybrid (24)</th>
<th>Incomplete (72)</th>
<th>None (192)</th>
<th>Total (406)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median</td>
<td>62</td>
<td>75</td>
<td>64</td>
<td>70</td>
<td>73</td>
<td>72</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>64%</td>
<td>75%</td>
<td>63%</td>
<td>68%</td>
<td>49%</td>
<td>59%</td>
<td>0.001</td>
</tr>
<tr>
<td>Symptomatic/Ruptured</td>
<td>28%</td>
<td>18%</td>
<td>17%</td>
<td>36%</td>
<td>22%</td>
<td>25%</td>
<td>0.097</td>
</tr>
<tr>
<td>Dissection</td>
<td>38%</td>
<td>4.4%</td>
<td>33%</td>
<td>43%</td>
<td>26%</td>
<td>29%</td>
<td><0.001</td>
</tr>
<tr>
<td>Crawford IV</td>
<td>38%</td>
<td>43%</td>
<td>17%</td>
<td>4.2%</td>
<td>34%</td>
<td>30%</td>
<td><0.001</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>24%</td>
<td>0%</td>
<td>25%</td>
<td>6%</td>
<td>2.1%</td>
<td>6.4%</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous aortic surgery</td>
<td>42%</td>
<td>44%</td>
<td>46%</td>
<td>42%</td>
<td>44%</td>
<td>44%</td>
<td>0.99</td>
</tr>
<tr>
<td>Significant comorbidity</td>
<td>8.2%</td>
<td>18%</td>
<td>13%</td>
<td>26%</td>
<td>50%</td>
<td>33%</td>
<td><0.001</td>
</tr>
<tr>
<td>Composite “good” outcome</td>
<td>25/42 (60%)</td>
<td>47/61 (77%)</td>
<td>13/23 (57%)</td>
<td>29/53 (55%)</td>
<td>NA</td>
<td>NA</td>
<td>0.061</td>
</tr>
</tbody>
</table>
Objectives: To examine hospital finances and physician payment associated with fenestrated endovascular aortic aneurysm repair (FEVAR) for complex aortic disease at a high-volume aortic center. To compare costs and reimbursement for FEVAR with open aortic aneurysm repair, and their trends over time.

Methods: Clinical and financial data were retrospectively collected from electronic medical and administrative records. Data for each patient included inpatient and outpatient encounters three months prior to and twelve months following the primary aorta operation.

Results: Between 2007 and 2017, 157 and 71 patients underwent physician-modified endograft (PMEG) and Cook Zenith Fenestrated (ZFEN) repair, respectively. Twenty-one additional patients evaluated for FEVAR underwent open repair instead. The 228 FEVAR patients provided a total positive contribution margin (CM, reimbursement minus direct cost) of $3.25 million. The index encounter for operation and hospitalization accounted for the majority (74%) of the total CM. The largest component (50.3%) of direct cost (DC) for FEVAR at index encounter was implant/graft expenses (Fig 1). The average DC of FEVAR and of open repair for index encounter were $34.6K and $35.0K, respectively. The average CM for FEVAR vs open repair were approximately $10.5K vs. $21.2K, attributable to differences in reimbursement. The average DC of FEVAR trended down over time as cumulative experience increased. Average reimbursement per FEVAR increased after Centers for Medicare & Medicaid Services approved reimbursement with the Investigational Device Exemption (IDE) trial for PMEG in 2011, and a new technology add-on payment for ZFEN in 2012. These trends resulted in a transition from negative to positive average CM in 2012 (Fig 2). The average physician payments for PMEG increased from $128 before to $5,848 after the start of the IDE trial. The average physician payments for ZFEN and open repair between 2011-2017 were $7,597 and $7,781, respectively.
Conclusions: FEVAR can be performed at a high-volume aortic center with positive CM and comparable physician payments to open repair. At this institution, hospital and physician payments improved for PMEG with the onset of the IDE trial, while hospital DC declined for both PMEG and ZFEN with increased experience.
Percutaneous Approach to Endovascular Aortic Aneurysm Repair: A Cost-Minimization Study

Jonathan C. Hong¹, Gary K. Yang¹, Benjo A. Delarmente², Rohan Khera³, Joel Price¹, Jerry C. Chen¹.

¹University of British Columbia, Vancouver, BC, Canada, ²Johns Hopkins School of Public Health, Baltimore, MD, USA, ³UT Southwestern, Dallas, TX, USA.

Objectives: Percutaneous access for endovascular aortic aneurysm repair (P-EVAR) is less invasive compared to surgical access (S-EVAR). It is associated with shorter recovery and fewer wound complications. However, vascular closure devices (VCDs) are costly and the economic impact of P-EVAR has important implications for resource allocation. The objective of our study was to determine the differences in cost between P-EVAR and S-EVAR.

Methods: We used a decision tree to analyze costs from a payer perspective over the course of the index hospitalization. Probabilities, relative risks, and mean difference summary measures were obtained from a systematic review and meta-analysis. We modelled differences in surgical site infection, lymphocele, and length of hospitalization. Cost parameters were derived from the 2014 National Inpatient Sample using ICD-9-CM codes. Attributable costs were estimated using generalized linear models adjusted by age, sex, and comorbidities. Sensitivity analysis was performed to determine the robustness of the results.

Results: A total of 6876 abdominal and thoracic EVARs were identified. P-EVAR resulted in a cost saving of $751 per procedure. The costs for P-EVAR were $1,287 (95%CI: 884-1835) and S-EVAR were $2,038 (95%CI: 757-4,280). P-EVAR were converted to open in 4.3% of cases. P-EVAR patients had a difference of -1.4 days (95%CI: -0.12 to -2.68) in length of hospitalization at a cost of $1,190/day (SE: 298). The cost saving of P-EVAR was primarily driven by the cost difference in length of hospitalization. In the base case, 4 VCDs were used per P-EVAR at $200/device. In the two-way sensitivity analysis, P-EVAR was cost saving even when 1.5 times more VCDs were used per procedure and the cost of each VCD was 1.5 times greater (Figure). In our probabilistic sensitivity analysis, P-EVAR was the cost saving strategy in 82.6%
of 10,000 Monte Carlo simulations when simultaneously varying parameters across their uncertainty ranges.

Conclusions: P-EVAR had lower costs compared to S-EVAR and could result in dramatic cost savings if extrapolated to the number of aortic aneurysms repaired. Our analysis was a conservative estimate that does not account for the improved quality-of-life after P-EVAR.

![Two-way sensitivity analysis of the cost per vascular closure device and number of vascular closure devices per procedure. The figure displays the most cost saving strategy across a range of model parameters. For example, in the base case (average patient), the cost per vascular closure device was $200 and four devices were used per procedure which lies in the blue area; therefore percutaneous EVAR is the most cost saving strategy.](image-url)
Management of Moderate Thoracic Blunt Aortic Injuries in Patients with Intracranial Hemorrhage

Elina Quiroga, Benjamin W. Starnes, Nam T. Tran, Niten Singh.

University of Washington, Seattle, WA, USA.

Objectives: Thoracic blunt aortic injuries (TBAI) are the second most common cause of death due to blunt trauma in the US. Patients with minimal injuries don’t require surgical repair; patients with severe injuries are treated emergently. Moderate aortic injuries are repaired in a semi-elective fashion; the optimal management of moderate TBAI patients and associated intracranial hemorrhage (ICH) is unknown. We sought to analyze the management and outcomes of patients presenting with concomitant moderate TBAI and ICH.

Methods: Single center, retrospective study of all consecutive patients who received a Thoracic Endovascular Aortic Repair (TEVAR) at our institution for treatment of moderate TBAI between 2014-2017. Patients were classified by our BAI classification into “minimal”, “moderate”, and “severe”. ICH was identified on CT scan and its severity determined by a neurosurgical team. Outcome measures included surgical timing, technique and surgical outcomes.

Results: 87 patients presented with TBAI during the study period; 52 patients had a moderate TBAI and underwent TEVAR; mean age 44 (range 16-88). 41 were male (79%) and 20 patients (38 %) presented with ICH. Median time from admission to surgery was 58.5 hours for patients with ICH and 26.5 hours for non-ICH patients (Table 1). Operations were performed when the neurosurgical service felt the ICH was stable. Intravenous Heparin was administered in all patients without ICH and in 19/20 (95%) of non-ICH patients. Protamine reversal was utilized in 80% of patients with ICH and 75% of non-ICH patients. No patient developed stroke or spinal cord injury. Worsening ICH was seen in only one patient. This patient underwent operation 97 hours after admission and was receiving an IV heparin infusion for pulmonary embolus 24 hours before TEVAR. There was no aortic related mortality in either group. 30-day mortality was 5% for ICH patients, and 3% for non-ICH patients.
Conclusions: Moderate aortic injuries can be managed in a semi-elective fashion. TEVAR can safely be performed in patients with ICH once the patient’s ICH has been deemed stable. Administration of heparin has no influence on outcomes with regard to worsening of ICH.

Table 1: Management and outcome of patients presenting with moderate blunt aortic injury with and without associated intracranial hemorrhage.

<table>
<thead>
<tr>
<th></th>
<th>ICH</th>
<th>No ICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>75% (24)</td>
<td>85% (17)</td>
</tr>
<tr>
<td>Age</td>
<td>46 (22-78) years</td>
<td>43 (16-88) years</td>
</tr>
<tr>
<td>Time to surgery (median ICR)</td>
<td>58.5 (11.5) hours</td>
<td>26.5 (16.5) hours</td>
</tr>
<tr>
<td>Anti-impulse Therapy</td>
<td>35% (7)</td>
<td>50% (16)</td>
</tr>
<tr>
<td>OR time (minutes)</td>
<td>73 (40-106)</td>
<td>86 (45-168)</td>
</tr>
<tr>
<td>Contrast use</td>
<td>74 mL</td>
<td>75 mL</td>
</tr>
<tr>
<td>IVUS</td>
<td>90% (18)</td>
<td>87% (28)</td>
</tr>
<tr>
<td>Subclavian coverage</td>
<td>50% (10)</td>
<td>44% (14)</td>
</tr>
<tr>
<td>Subclavian revascularization</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hospital length of stay (mean)</td>
<td>45 days</td>
<td>17 days</td>
</tr>
<tr>
<td>Disposition: home</td>
<td>35% (7)</td>
<td>69% (22)</td>
</tr>
</tbody>
</table>
Presentation #26

Association of Vascular Surgery Board of the American Board of Surgery Examination Performance with Clinical Outcomes: Experience Matters

Larry W. Kraiss¹, Ragheed Al-Dulaimi¹, Angela Presson¹, Jack L. Cronenwett², John F. Eid³, Joseph L. Mills⁴, John (Jeb) Hallet⁵, K. Craig Kent⁶, Philip P. Goodney², Benjamin S. Brooke¹.

¹University of Utah, Salt Lake City, UT, USA, ²Dartmouth College, Hanover, NH, USA, ³Baylor Scott & White Health, Dallas, TX, USA, ⁴Baylor College of Medicine, Houston, TX, USA, ⁵Medical University of South Carolina, Charleston, SC, USA, ⁶Ohio State University, Columbus, OH, USA.

Objectives: The Vascular Surgery Board of the American Board of Surgery Vascular Surgery (VSB-ABS) Qualifying and Certifying examinations are meant to assess qualifications, but it is unclear whether examination performance correlates with clinical outcomes. We assessed this relationship using data from the Society for Vascular Surgery Vascular Quality Initiative (SVS-VQI).

Methods: VSB-ABS examination performance for vascular surgeons participating in the SVS-VQI registry was characterized according to pass/fail status. Surgical experience was measured by number of years since completion of training. Examination performance and experience were correlated with a composite outcome [in-patient major adverse cardiac events or post-operative death (MACE+POD)] following arterial reconstructions (carotid stenting or endarterectomy, aortic aneurysm repair, open peripheral surgical bypasses) registered in SVS-VQI. Multivariate mixed effects regression was performed adjusting for sex, surgery type, geographic region and clustering by surgeon/hospital.

Results: From 2003-2017, complete data were available for 776 vascular surgeons who performed 124,171 arterial reconstructions (carotid n=56,650; aortic n=34,764; peripheral n=32,757) registered in SVS-VQI. Patient characteristics associated with MACE+POD were female sex and age (Table). Of the 776 surgeons, 149 (17%) had failed at least one VSB-ABS exam. For each type of surgical reconstruction as well as all vascular procedures combined, VSB-ABS performance (pass/fail status) was not associated with risk-adjusted
odds of MACE+POD. However, increasing surgical experience correlated with significantly lower likelihood of MACE+POD (2% lower odds/year of experience since training).

Conclusions: VSB-ABS examination performance by SVS-VQI surgeons does not correlate with registry-reported clinical outcomes. Increasing surgical experience is associated with lower odds of cardiovascular morbidity and death.

Table – Multivariable Analysis of Factors Associated with MACE+POD

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Odds Ratio</th>
<th>95% Cl</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AORTIC COHORT (n = 34,764)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Sex = Female</td>
<td>1.26</td>
<td>1.18 – 1.34</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Patient Age</td>
<td>1.02</td>
<td>1.02 – 1.02</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Exam Performance = Pass Only</td>
<td>0.93</td>
<td>0.82 – 1.05</td>
<td>0.303</td>
</tr>
<tr>
<td>Years From Completion of Training</td>
<td>0.98</td>
<td>0.98 – 0.99</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CAROTID COHORT (n = 56,650)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Sex = Female</td>
<td>1.15</td>
<td>1.06 – 1.24</td>
<td>0.006</td>
</tr>
<tr>
<td>Patient Age</td>
<td>1.03</td>
<td>1.03 – 1.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Exam Performance = Pass Only</td>
<td>0.99</td>
<td>0.85 – 1.14</td>
<td>0.872</td>
</tr>
<tr>
<td>Years From Completion of Training</td>
<td>0.98</td>
<td>0.98 – 0.99</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PERIPHERAL COHORT (n = 32,757)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Sex = Female</td>
<td>1.10</td>
<td>1.03 – 1.18</td>
<td>0.016</td>
</tr>
<tr>
<td>Patient Age</td>
<td>1.04</td>
<td>1.03 – 1.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Exam Performance = Pass Only</td>
<td>1.04</td>
<td>0.92 – 1.18</td>
<td>0.603</td>
</tr>
<tr>
<td>Years From Completion of Training</td>
<td>0.99</td>
<td>0.98 – 0.99</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ALL RECONSTRUCTIONS COMBINED (n = 124,171)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Sex = Female</td>
<td>1.07</td>
<td>1.03 – 1.12</td>
<td>0.006</td>
</tr>
<tr>
<td>Patient Age</td>
<td>1.04</td>
<td>1.03 – 1.04</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Exam Performance = Pass Only</td>
<td>0.97</td>
<td>0.89 – 1.05</td>
<td>0.517</td>
</tr>
<tr>
<td>Years From Completion of Training</td>
<td>0.98</td>
<td>0.98 – 0.99</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Early Experience with the Octopus Endovascular Strategy in the Management of Thoracoabdominal Aneurysms

Anahita Dua, Kedar Lavingia, Michael Dake, Jason Lee.

Stanford University Medical Center, Stanford, CA, USA.

Objectives: The Octopus endovascular strategy for TAAA involves placement of bifurcated graft(s) in the thoracic aorta to create separate limbs that facilitate deployment of multiple parallel covered stents for branch perfusion. We reviewed our early outcomes of the Octopus TAAA repair strategy.

Methods: Our standardized approach included a Gore Excluder main body, thoracic cuffs, and multiple Viabahn or VBX stents inserted from an axillary conduit in parallel fashion through the limbs for visceral perfusion.

Results: From 2015-2018 we treated 21 patients (48% female, aged 72.9 years) with mean TAAA diameter of 6.7cm. All patients had been turned down for open repair with 86% related to degenerative aneurysms and 14% dissection-related. Four patients were urgent with two ruptures. TAAA extent was 9% type 2, 62% type 3, 29% type 4. A mean of 3.04 visceral branches per patient were revascularized, with the SMA (90%) usually perfused through its own limb, and both renals usually reconstructed in parallel graft fashion with the distal abdominal extension though one of the main body limbs. Operative time was 8 hours, fluoro time 164min, contrast 182mL, and blood loss 807mL. We staged the thoracic and abdominal portions of the cases in 24% of patients. Technical success defined as TAAA exclusion and stenting of all planned visceral branches was achieved in 90% of cases. Perioperative complications included paraplegia (n=2), acute kidney injury (n=3), prolonged ventilation (n=2), MI (n=1), and ischemic bowel (n=1). In-hospital all-cause mortality was 14.2% with 30-day survival being 90.5%. On immediate postoperative imaging, gutter endoleak at the visceral limb was seen in three patients (19%), with all resolving by 6-month imaging. At latest follow-up (median 13.5 months), proximal type I endoleak rate was 9.5%, all being successfully treated with proximal cuffs. Primary patency of visceral branches was 93.8% (celiac 100%, SMA 94.7%, right renal 88.9%, left renal 94.8%). Six-month and one year survival for the entire cohort was 88.3% and 71.4%, and better for elective cases (92.9% and 78.6%) versus...
Conclusions: The Octopus procedure is a high-risk option for urgent or emergent endovascular TAAA repair with off the shelf devices in patients who are not candidates for open repair.
Integrated Residency is Associated with an Increase in Women Among Vascular Surgery Trainees

Susanna Shin¹, Sherene Shalhub².

¹Surgery, University of Washington, Seattle, WA, USA, ²University of Washington, Seattle, WA, USA.

Objectives: Over the past decade, the proportion of women within Graduate Medical Education (GME) has increased. Correspondingly, the proportion of women in almost every specialty has increased, including surgical specialties. We sought to evaluate the effect of establishing Vascular Surgery Integrated Residencies (VSIRs) on the proportion of women in VS training programs.

Methods: Resident data were obtained from the Accreditation Council for GME (ACGME) Data Resource Book for the academic years 2007-2016. Data were collected on overall ACGME residency numbers as well as on the following surgical subspecialties: Vascular, General, Thoracic, Neurological, Orthopedic, Ear Nose and Throat, Plastic, and Urological surgery. The number and proportion of women per year in VSIRs and VS fellowships were compared to those in the other surgical specialties.

Results: During the study period, the overall the number of women in ACGME accredited residency programs increased from 41% (N=43695/107851) to 44% (N=57130/129720) of residents. Since the advent of the VSIR, the number of trainees within VS has grown by 56% from 221 to 501 trainees. The proportion of women in VS training programs has increased from 12% (N = 27/221) to 33% (N = 164/501) of trainees. This increase over the 9-year study period was greater than in any other surgical subspecialty and greatest within the VSIR. Compared to fellowship training programs, integrated surgical training programs within the same subspecialty had a higher proportion of women though variability between surgical subspecialties remained notable.

Conclusions: While lower than the proportion of women within all GME training programs, an increasing proportion of women have entered VS training during the study period. This appears to be related to the introduction of VSIRs and exceeds the proportion of women entering other surgical subspecialties. Further work to understand surgical specialty preferences and choice of careers after training is warranted.
Presentation #29

Experienced Operators Achieve Superior Primary Patency and Wound Complication Rates with Endoscopic Greater Saphenous Vein Harvest Compared to Open Harvest in Lower Extremity Bypasses

Matthew Kronick, Enjae Jung, Cherrie Abraham, Timothy Liem, Moneta Gregory, Gregory Landry.
Oregon Health & Science University, Portland, OR, USA.

Objectives: Prior studies have suggested improved wound complication rates but decreased primary patency in lower extremity bypasses performed with endoscopic vein harvest (EVH) vs open harvest (OVH). We hypothesize that the inferior patency reflects the initial learning curve for EVH, and that with experience, improved patency can be achieved.

Methods: Single institution review of 113 subjects with critical limb ischemia that underwent infrainguinal bypass with a continuous segment of greater saphenous vein harvested either endoscopically (n=49) or through a single open incision (n = 64) from 2012 to 2017. EVH was performed by surgeons with > 5 years experience with this technique. Operative outcomes, patency, complications and readmission rates were compared between the harvest methods.

Results: There were no significant differences in patient demographics, medications, operative indications, or inflow/outflow vessels between the two groups. Median operative time for OVH was 290 minutes and hospital length of stay 6 days, and for EVH 316 minutes and 5 days (p=ns). Harvest related wound complications were more frequent with OVH (29% vs 12%, p=0.04). Primary patency at 1 and 2 years was 57% and 41% for OVH, and 80% and 65% for EVH (p=0.03). Assisted primary patency at the same time points was 90% and 85% for OVH, and 97% at both times for EVH (p=0.11). Thirty day readmissions were similar between the two groups (OVH 25% vs EVH 12%, p=0.3), but 90 day readmissions were more frequent in the OVH group (33% vs 14%, p=0.04).

Conclusions: With experience, lower extremity bypass using EVH can result in improved primary patency compared to OVH, while also resulting in fewer wound complications and readmissions, with comparable operative times and hospital length of stay. This technique should be more widely adopted by vascular surgeons as a primary method of vein harvest.
Objectives: Peripheral arterial disease (PAD) is characterized by impaired arterial circulation to the extremities caused in part to atherosclerosis, a condition which has been linked to hypercholesteremic dietary lifestyle. This study examined the effect of plant-based diet (PBD) on vascular function in PAD patients.

Methods: A total of 42 patients with PAD and hypercholesterolemia were randomized to receive advise on PDB (n=21) or no specific dietary advice (control, n=21). Biochemical parameters, including lipid profile, C-reactive protein, nitric oxide, and superoxide dismutase were measured at baseline and 4 months. Vascular function including brachial artery flow-mediated vasodilation (FMD), carotid intima-media thickness (IMT), carotid-femoral pulse wave velocity (PWV), and brachial-ankle PWV were measured at baseline and 4 months after dietary intervention.

Results: Biochemical parameters were similar at baseline between the two groups. There was no change in any of the biochemical parameters in the control group at 4 months. However, patients in the PBD group had a significant decrease in total and LDL-cholesterol by 7.6% and 13.6%, respectively (P=0.01). Nitric oxide levels were greater (18.7 ± 13.7 μmol/L; P<0.01) in the PBD group at 4 months compared with baseline values (7.7 ± 5.3 μmol/L), whereas there were no changes in the control group. At baseline, FMD was similar between the two groups. After four months, FMD was significantly improved in the PBD group compared to the control group (8.7± 5.6% vs. 5.1 ± 4.5%, P=0.03). There were no differences in carotid-femoral PWV and brachial-
ankle PWV in the control group at 4 months. In contrast, the PBD group showed a significantly lower carotid-femoral PWV (695.4 ± 93.7 cm/sec versus 938.5 ± 163.4 cm/sec; P=0.04) and lower brachial-ankle PWV (1127.2 ± 118.4 cm/sec versus 1546.7 ± 162.1 cm/sec; P=0.03) compared to the control group. The ankle-brachial index (ABI) was improved by 7.6% in the PBD group. No difference in carotid IMT was found between the two groups.

Conclusions: The present study shows that plant-based diet improves vascular endothelial function in PAD patients, which may be partly mediated through nitric oxide production. Plant-based diet can result in decreased serum cholesterol which may further enhance vascular endothelial function.
Multi-vessel Tibial Revascularization does not Improve Outcomes in Patients with Critical Limb Ischemia

Kedar S. Lavingia, Kenneth Tran, Nathan Itoga, Anahita Dua, Matthew Mell, Venita Chandra.

Stanford University Medical Center, Stanford, CA, USA.

Objectives: Single versus multi-vessel revascularization for critical limb ischemia (CLI) remains controversial. The purpose of this study was to evaluate single versus multiple tibial vessel interventions in patients with multi-vessel tibial disease.

Methods: Using the Vascular Quality Initiative (VQI) registry we reviewed patients undergoing lower extremity endovascular interventions involving the tibial arteries. Patients with CLI were included if at least two tibial vessels were diseased and appropriate follow-up documented. Primary outcomes were amputation, primary-assisted patency and amputation free survival (AFS).

Results: After exclusions, a total of 761 patients with multi vessel tibial disease and CLI were evaluated. Of these, 473 (62.1%) underwent single vessel tibial intervention (Group 1), while 288 (37.9%) underwent multi-vessel (≥2) intervention (Group 2). Patients in group 2 were younger (69.1 vs 73.2 years, p<.001) with higher chance of smoking (29.5% vs 18.2%, p<.001). Prior ipsilateral amputation (19.2% vs 22.2%, p=.22) or inflow procedures (3.1% vs 2.8%, p=.29) were similar. Group 1 more commonly had concurrent femoral or popliteal inflow interventions (83.7% vs 78.1%, p=.05). Multi-vessel runoff on completion was significantly greater for group 2 (99.9% vs. 39.9%; p<.001).

Mean follow-up was 337 ± 62 days. No differences were observed between groups 1 and 2 for major amputation (9.0% and 7.6%; p=.6) patency (89.7% vs. 86.8%, p=.45), or AFS (p=.372; Fig 1). In a multivariate cox model, loss of patency was the only significant predictor of major amputation (HR 5.36 [2.7-10.6], p=.01). A sub-group analysis of 355 (46.6%) patients with tissue loss data showed tissue loss prior to intervention was not predictive of future major amputation.
Conclusions: In the VQI registry, patients with CLI and multi-vessel tibial disease did not appear to benefit in amputation, AFS or primary-assisted patency when undergoing multi-vessel tibial intervention compared with single tibial revascularization. Further studies are needed to determine when multi-vessel treatment is warranted for this population.
Objectives: Peripheral artery disease (PAD) is a growing healthcare burden, with rising costs related to utilization of LER. We sought to examine recent trends in procedure volumes by level of disease, provider specialty, and encounter setting.

Methods: The Medicare claims database was queried for 2012 and 2016 LER CPT codes and data was extracted for allowed charges, allowed claims, billing provider, and procedure place of service. We examined trends in procedure by level of arterial disease treated.

Results: In 2012, 246,513 CPT codes for LER were billed to Medicare (14% open[OPEN], 86% endovascular[ENDO]). In 2016 this number was 279,029 (10% OPEN, 90% ENDO), a 13% increase in overall utilization. In 2012, there were 99,823 outpatient (OP) and 28,903 office based (OB) ENDO procedures. By 2016, there were 104,083 OP and 71,873 OB procedures. The breakdown of ENDO procedures in 2012 was 36% angioplasty (PTA), 43% stenting (ST), and 21% atherectomy (ATH). Of these 9%, 11%, and 26% respectively were performed in an OB setting. Comparatively in 2016, ENDO interventions were comprised of 35% PTA, 36% ST, and 29% ATH of which 16%, 23%, and 51% respectively were performed in an OB setting (p=<.001). There was no significant change in iliac interventions over the time period; however, differences were pronounced at the infra-inguinal level. Total femoro-popliteal interventions were 101,071 (47%) in 2012 and 118,540 (47%) in 2016, with ATH increasing from 25,038 (25%) in 2012 to 37,453 (32%) in 2016, Fig 1. Total tibial ENDO interventions increased strikingly from 56,378 (23%) in 2012 to 79,333 (32%) in 2016, a relative volume increase of 41%. This was driven largely by increased use of tibial ATH; 19,008 (34%) in 2012 versus 34,438 (43%) in 2016 (p=<.001). Notably, OB procedures accounted for the bulk of the increase in ATH in 2016 (Fig. 1). In keeping with the trend, ATH
performed on an “additional tibial vessel” increased from 3,707 in 2012 to 6,494 in 2016. These trends were consistent across all provider specialties.

Conclusions: Despite a lack of comparative evidence to support its use, the volume of office-based ATH procedures in the Medicare population continues to grow dramatically, particularly at the tibial level. These secular trends were similar across provider specialties and have significant cost implications.

Fig. 1 – Infrainguinal Endovascular Procedures
Objectives: Volume flow measurements obtained by duplex ultrasound (DU) are recommended for monitoring arteriovenous dialysis access fistulas (DAF) and assessing maturation. We developed a DU simulator and used it to assess the accuracy of volume flow measurements.

Methods: The DU simulator consists of a mannequin, computer, and mock transducer. Each simulated case is built from 2 dimensional (2D) B-mode images obtained from a patient that are used to create a gray-scale image volume and a 3D surface model of the fistula anastomosis and adjacent artery and vein. Computational flow modeling is then used to determine the spatial and temporal distribution of blood flow velocities based on vessel geometry. The simulator displays a real-time 2D B-mode and color-flow image corresponding to transducer position on the mannequin. Doppler spectral waveforms are generated according to user-defined settings such as sample volume size and beam angle. Accuracy was assessed by scanning each case on the mannequin and measuring volume flow in the inflow artery and outflow vein for comparison with the true volume flow values at the sample site.

Results: Four examiners made 96 volume flow measurements on 4 DAF models. The mean absolute deviation from the actual computed volume flow was significantly lower for arteries than veins (22 ± 19%, N=48 vs. 58 ± 33%, N=48, p<0.0001) but similar between examiners (p=NS by ANOVA). Error in volume flow measurement correlated significantly with error in measuring vessel diameter (r=0.67, p<0.001) and cross sectional area (r=0.92, p<0.001). Volume flow error also correlated closely with vessel eccentricity (r=0.58, p<0.001) and with error in blood flow velocity (r=0.50, p<0.001). Volume flow error was reduced from 39 ± 38% to 9 ± 8% (p<0.0001) by calculating vessel area as an ellipse instead of a circle.
Conclusions: Volume flow measurements by DU are based on a circular vessel shape but veins can be highly elliptical (Fig 1). Simulation-based analysis showed that error in measuring volume flow is mainly due to the assumption of a circular vessel cross section. For accuracy volume flow should be measured where the vessel is relatively circular; alternatively, major and minor axis dimensions should be measured to compute an elliptical cross sectional area.

Fig 1. Simulator transverse color-flow image of a DAF artery and vein.
Comparison of Bovine Carotid Xenograft Versus ePTFE Grafts for Forearm Loop Hemodialysis Access

Benjamin Colvard¹, Kedar Lavignia¹, Vy T. Ho¹, Nathan Itoga¹, Anahita Dua¹, E John Harris¹, Matthew Mell¹, Ehab Sorial², Manuel Garcia-Toca².

Stanford University Medical Center, Stanford, CA, USA, Stanford University Hospital, San Jose, CA, USA.

Objectives: Forearm loop grafts are a useful option for dialysis access in patients without suitable forearm veins. Bovine carotid artery (BCA) and expanded polytetrafluoroethylene (ePTFE) are commonly used grafts for this purpose, but no data exists to support the use of one over the other in the forearm loop conformation.

Methods: We performed a retrospective review of 57 forearm loop grafts implanted at two institutions with a shared patient population between January 2009 and May 2017. Primary and secondary patency rates were calculated via univariate analysis and a cox regression model adjusted for age, gender, and BMI.

Results: 26 BCA and 31 ePTFE grafts were placed during the study period. Mean follow-up was 37±25 months. Primary and secondary patency rates in the BCA group were 71.7% and 83.6%, 54.8% and 71.1%, and 28.9% and 62.2% at 6, 12, and 24 months respectively. In the ePTFE group, primary and secondary patency rates were 56.8% and 66.7%, 39.3% and 59.7%, and 26.9% and 40.4% at 6, 12, and 24 months (Figure 1). When adjusted for age, gender, and BMI, secondary patency was significantly better with BCA when compared to ePTFE (p=0.04). Infection rates were 7% (2 grafts) for BCA and 3% (1 graft) for ePTFE.

Conclusions: Bovine carotid xenografts in forearm loop configuration for hemodialysis access have improved secondary patency and similar infection rates when compared to ePTFE forearm loops.

Figure 1. Kaplan-Meier estimates of primary and secondary patency
Primary Patency

Log-rank test: p=0.42

Secondary Patency

Log-rank test: p=0.037
Objectives: Peripheral arterial disease (PAD) is characterized by low-grade systemic inflammation. Monocytes (Mo) and Mo-derived macrophages (MDM) play a central role in vascular inflammation and its resolution. We hypothesize that impaired resolution in PAD contributes to adverse clinical outcomes.

Methods: In a cross-sectional study, we profiled serum cytokines, phagocytic activity of leukocytes, Mo cell surface markers, and gene expression of MDM from healthy subjects (HS, n≥10) and patients with stable claudication (n≥10). Leukocyte phagocytosis of fluorescently labeled E.coli and Mo surface markers were determined by flow cytometry. MDMs were cultured from peripheral blood Mo isolated by density gradient centrifugation. MDM cytokine production and gene expression, before and after stimulation with lipopolysaccharide (LPS), were determined by ELISA and qPCR, respectively.

Results: Patients with PAD had elevated serum hsCRP (3.7 vs 0.6 mg/L, p=.004) and IL-6 (5.1 vs 1.1 pg/mL, p=.01) and trended towards higher levels of MCP-1 and lower adiponectin compared to HS. Circulating Mo and PMN from PAD patients had reduced phagocytic activity for E.coli (Mo: >30%, p<.001; PMN: >25%, p<.01). Flow cytometry demonstrated a higher proportion of the pro-inflammatory intermediate Mo subset (CD14+CD16+, 1.8-fold, p=.04) in PAD subjects. MDM from PAD subjects retain their intrinsic inflammatory program, producing more IL-6 (>4 fold, p=.03) and IL-1β (>10 fold p=.04), and demonstrating increased expression of M1 genes (TNF-α, MCP-1, CXCL10) and decreased expression of M2 genes (CCL17, MRC1) versus HS (Table 1).

Conclusions: Clinically stable PAD subjects have elevated serum inflammatory markers compared to healthy subjects. Circulating Mo and PMN in patients with PAD have reduced phagocytic activity and a greater proportion of the pro-inflammatory intermediate Mo subset. MDM from PAD patients preserve their elevated inflammatory state in culture. These data demonstrate a heightened inflammatory and impaired resolution phenotype in PAD that has potential
implications for disease progression and response to interventions.

Table 1. Monocyte-derived macrophage (MDM) gene expression of the PAD cohort relative to healthy subjects.

<table>
<thead>
<tr>
<th>Gene</th>
<th>M1 or M2</th>
<th>Expression Fold Change</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFα (veh)</td>
<td>M1</td>
<td>2.71</td>
<td>0.02*</td>
</tr>
<tr>
<td>TNFα (LPS)</td>
<td></td>
<td>0.81</td>
<td>0.33</td>
</tr>
<tr>
<td>MCP-1 (veh)</td>
<td>M1</td>
<td>1.92</td>
<td>0.05*</td>
</tr>
<tr>
<td>MCP-1 (LPS)</td>
<td></td>
<td>1.91</td>
<td>0.01*</td>
</tr>
<tr>
<td>iNOS (veh)</td>
<td>M1</td>
<td>1.34</td>
<td>0.26</td>
</tr>
<tr>
<td>iNOS (LPS)</td>
<td></td>
<td>1.04</td>
<td>0.94</td>
</tr>
<tr>
<td>CXCL10 (veh)</td>
<td>M1</td>
<td>7.87</td>
<td>0.04*</td>
</tr>
<tr>
<td>CXCL10 (LPS)</td>
<td></td>
<td>1.81</td>
<td>0.29</td>
</tr>
<tr>
<td>IL-10 (veh)</td>
<td>M2</td>
<td>1.50</td>
<td>0.19</td>
</tr>
<tr>
<td>IL-10 (LPS)</td>
<td></td>
<td>2.72</td>
<td>0.009*</td>
</tr>
<tr>
<td>CCL17 (veh)</td>
<td>M2</td>
<td>0.48</td>
<td>0.09</td>
</tr>
<tr>
<td>CCL17 (LPS)</td>
<td></td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>MRC1 (veh)</td>
<td>M2</td>
<td>0.52</td>
<td>0.09</td>
</tr>
<tr>
<td>MRC1 (LPS)</td>
<td></td>
<td>0.30</td>
<td>0.01*</td>
</tr>
</tbody>
</table>

Expression fold change was calculated as $2^{\Delta \Delta CT}$, and represents the fold change in the average expression of the target gene within the PAD cohort (n=10) versus the average expression of the target gene within the healthy subject cohort (n=10), normalized to the housekeeping gene (HPRT). MDM were stimulated with lipopolysaccharide (LPS), to mimic the occurrence of an acute inflammatory event, or vehicle (veh) for 24 hours prior to assessment of gene expression. *P<0.05 by unpaired Student’s t test. TNFα, tumor necrosis factor alpha; MCP-1, monocyte chemoattractant protein-1; iNOS, inducible nitric oxide synthase; CXCL10, C-X-C motif chemokine 10; IL-10, interleukin 10; CCL17, chemokine (C-C motif) ligand 17; MRC1, mannose receptor C Type 1.
Objectives: Studies of major amputation after initial minor amputation are limited with rates of subsequent major amputation ranging from 14-34% with a limited understanding for associated comorbidities and time to subsequent amputation. We sought to determine major amputation rates for patients who undergo initial minor amputation and determine which factors are associated with limb preservation with open vs endovascular treatment.

Methods: Using statewide data we identified patients with peripheral artery disease (PAD), diabetes mellitus (DM), and both PAD/DM (PD) with a lower extremity ulcer who underwent minor amputation from 2005-2013. We studied rates of subsequent major amputation, time to amputation, and used Cox-Proportional hazards modeling to study which factors affect risk of subsequent major amputation.

Results: From 2005 to 2013, 11,597 patients (DM=4254, PAD=2142, PD=5201) with ulcers underwent minor amputation. The rate of subsequent amputation was highest in patients with PD (23% vs DM=17%, PAD=17%, p=NS). The rate of subsequent minor amputation was 16% in the PD group vs 15.2% in PAD and 12.2% in DM patients. Patients with PD had the highest rate of subsequent major amputation (6.3% vs DM=5.2%, PAD=2.1%, p=NS). The median time to major amputation was lowest in patients with PAD (8.5 months vs DM=14 months, PD=13 months, p=NS). There was no difference in risk of subsequent major amputation for patients who underwent initial open revascularization vs endovascular therapy (HR=0.92, CI=0.92-1.04). There was also no difference in time to subsequent major amputation between open and endovascular therapy (9.8 vs 8.7 months, p=NS). In multivariable analysis, patients who could be treated completely in the outpatient setting were less likely to undergo amputation (HR=0.7, CI=0.5-0.99) compared to those that required hospitalization or presented to the
emergency room.

Conclusions: Patients with ischemic ulcers and diabetes are at the highest risk for subsequent major and minor amputation, with most occurring within a year of the initial minor amputation. Initial endovascular treatment did not increase the risk of subsequent major amputation compared to open and there was no difference in time to amputation indicating the endovascular first approach may be reasonable for patients with CLI.
Preadmission Does Not Correlate with Fewer Complications, Reduced Failure to Rescue or Improved Survival in EVAR and OAAA Patients

Justin Inman¹, Devin S. Zarkowsky¹, Adam Z. Oskowitz¹, Mohammad H. Eslami², Philip P. Goodney³, Shant M. Vartanian¹, Caitlin W. Hicks⁴

¹University of California San Francisco, San Francisco, CA, USA, ²University of Pittsburgh, Pittsburgh, PA, USA, ³Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA, ⁴The Johns Hopkins Hospital, Baltimore, MD, USA.

Objective: Few data exist on the efficacy of preadmission before AAA surgery. We compare outcomes for patients admitted to the hospital the day before AAA repair vs those admitted on the day of surgery.

Methods: Elective EVAR and OAAA patients captured within the Vascular Quality Initiative dataset were examined. Appropriate univariate and multivariate tests analyzed outcomes - 30-day survival, failure to rescue, major complications - among patients admitted the day prior to surgery versus those admitted the day of surgery. Coarsened exact matching (CEM) validated results from the unmatched cohorts.

Results: Between 2003 and 2017, 1,208 of 25,824 (4.7%) EVAR patients and 340 of 6,079 (5.6%) OAAA patients were preadmitted to 247 and 191 centers, respectively. Figure 1 depicts the center-level distribution of patients admitted a day prior to surgery. Patients treated with EVAR differed statistically on 19 of 26 demographic and preoperative characteristics, while OAAA differed on 11 of 26 (all P<0.05). Preadmitted EVAR and OAAA patients experienced more frequent complications (both P<0.05). Failure to rescue was not different for patients preadmitted prior to EVAR (0.4% vs. 0.5%, P=0.70) or OAAA (2.9% vs. 1.8%, P=0.21), nor was 30-day survival (99.3% vs. 99.2%, P=0.71 and 96.8% vs. 97.7%, P=0.38, respectively); these results persisted after CEM. Cox proportional hazards models demonstrated that preadmission did not correlate with 30-day survival in either the EVAR (OR 0.68, P=0.38) or OAAA groups (OR 0.70, P=0.43). MVLR models demonstrated that transfer from an outside facility was associated with preadmission (EVAR OR 14.92, P<0.001 and OAAA OR 4.70, P<0.001).
Conclusions: Preadmission occurred at more than 50% of centers treating AAA patients with EVAR. Neither EVAR nor OAAA patients preadmitted experience fewer complications, reduced failure to rescue, improved 30-day survival or 30-day mortality hazard in comparison to those admitted the day of surgery, suggesting this practice is of unclear benefit.
Objectives: A 63-year-old woman underwent superior mesenteric artery (SMA) stenting in 2007 for spontaneous dissection. In 2017 she underwent repeat stenting with a RX Herculink Elite (Abbott Vascular) balloon expandable cobalt chromium stent. Abdominal pain and a full body rash prompted allergy testing, which demonstrated cobalt and chromium reactivity. We describe an endovascular technique for SMA stent removal.

Methods: Bilateral open axillary and unilateral percutaneous femoral access was obtained. TourGuide 6.5F, 9mm deflection steerable sheaths (Medtronic) were introduced into the descending aorta from each axillary access point. With one TourGuide, Rosen wire access through the SMA stent and distal balloon control was obtained. With the other TourGuide, a 2.0mm EndoJaw disposable biopsy forceps (Olympus) was used to grasp the proximal end of the SMA stent. The stent was withdrawn into the aorta over the balloon shaft. While maintaining EndoJaw control of the stent, the balloon was retracted into the aorta and inflated; the stent was then released from the EndoJaw. Using a snare from the groin, a body floss wire was passed from the axillary balloon lumen out the femoral sheath. The femoral access was upsized to a 14F DrySeal sheath (Gore). From the groin, a gooseneck snare was advanced over the body floss and used to secure the stent in the thoracic aorta. The balloon was then deflated and removed, while the stent was pulled over the body floss wire into the femoral sheath and removed. Angiography and intravascular ultrasound confirmed no damage to the native SMA from stent removal.

Results: The patient was discharged on clopidogrel and rivaroxaban on post-procedure day 2 with minimal abdominal pain and improved rash.

Conclusions: We describe a safe endovascular approach to SMA stent removal. This approach maintained continuous control of the stent, preventing distal embolization; permitted interrogation of the native SMA to ensure patency; and minimized intravascular injury during stent removal from the patient.
Figure 1. Endovascular retrieval of a superior mesenteric stent (A) using an EndoJaw disposable biopsy forceps (B) with balloon control to prevent distal embolization (C) and a snare to secure the stent to the wire (D).
ePoster Presentation #3

Utility of Open Forefoot Amputation in the Management of Patients with Critical Limb Ischemia

Keck School of Medicine, Los Angeles, CA, USA.

Objective: Management of patients with critical limb ischemia (CLI) and extensive foot necrosis presents a challenge for limb salvage. To achieve source control an open forefoot amputation is often required. Our study evaluates preoperative risk factors that contributed to durability and efficacy of open transmetatarsal amputation (TMA) in patients with critical limb ischemia.

Methods: Consecutive patients who underwent open TMA at a single institution between 2009-2018 were analyzed. Patient demographics, comorbidities, indications, limb revascularization history, postoperative complications, reinterventions, and functional status were collected. Descriptive statistics were used for analysis of entire cohort. Univariate and multivariate analyses were performed to determine predictors of morbidity.

Results: Forty-three complete forefoot amputations were performed in 39 patients, with 9 females. The mean age of our cohort was 65 ± 12 years. Indications for TMA were dry gangrene in 56% and infection in 44%. Ninety percent of patients had diabetes, 54% had end-stage renal disease (ESRD), and 80% had prior toe amputations. Ipsilateral revascularization was performed on 34 limbs, 21 via open and 13 via endovascular approach. Mean follow-up was 19.7 ± 22 months. All patients maintained their preoperative ambulatory status after their amputation, regardless of healing status. Time-to-healing was available for 20/43 limbs with a mean of 8.7 ± 11.4 months. Limb salvage was successful in 39 limbs (91%) where major amputation in the form of a below-knee amputation (BKA) was required in 4 limbs (9%), all of which were ESRD patients. BKA was more prevalent in ESRD patients (p=0.05). On univariate analysis, forefoot gangrene was the only predictor of amputation-free survival (APS) after TMA (odd ratio 0.2, 95% confidence interval 0.045-0.88) (p=0.03). On multivariable analysis, after adjustment for ESRD, forefoot gangrene was no longer a predictor of APS (OR 0.2, 95% CI 0.04-1.17) (P=0.07).
Conclusions: Open TMA resulted in a very low rate of transition to BKA. Amputation-free survival among open TMA patients is mainly impacted by the presence of gangrene of the forefoot on presentation. ESRD was not associated with the need for further limb amputation.
ePoster Presentation #4

Initial Experience with the Bolton TREO Device for Fenestrated EVAR

Benjamin W. Starnes, Billi Tatum, Brenda Allen-Kline, Niten Singh.

University of Washington, Seattle, WA, USA.

Objective: The Bolton TREO Device (Figure 1) is an endograft with unique features that lends itself to fenestrated EVAR (FEVAR) due to low device profile, wide amplitude stent design and increased inter-stent distance, providing for a large amount of “real estate” for individual fenestration placement. We sought to describe initial experience with this device for FEVAR to treat short neck and juxtarenal AAAs.

Methods: As part of an ongoing PS-IDE (#NCT01538056), subjects were prospectively enrolled and underwent elective FEVAR using a variety of devices. Demographics and procedural details were collected. Data from subjects treated with the TREO device were compared to patients undergoing elective FEVAR with other commercially available devices.

Results: 112 patients were enrolled in the study and 20 subjects underwent elective FEVAR with the Bolton TREO device. Demographics are listed in Table 1 and procedural details are listed in Table 2. Mean aneurysm size was 63.5mm. Mean pre-op neck length was 5.3mm and mean final seal zone length 45.7mm. Average hospital and ICU lengths of stay were 3.8 and 2.6 days respectively. There were 59 fenestrations created for 19 SMA’s and 40 renal arteries (2.95 FENS/pt). Treatment success, defined as successful implantation of the device with all target vessels preserved, was 95% (19/20) with only one renal artery not successfully preserved (1.7%). Mean follow up was 402 days (14.4 mos). There were six endoleaks detected on follow up (T1a = 0, T1b = 0, T2=5, T3=1) requiring one re-intervention. Two subjects died within 30 days, one due to an intracranial hemorrhage and one due to respiratory failure. Compared with other commercially available devices, the TREO device performed favorably in terms of treatment success. Graft modification time was significantly shorter for TREO (41.6m) when compared to Zenith (54.9m) or Medtronic (54.1m) p=<0.0001, one-way ANOVA.

Conclusions: Our institution has exclusive world-wide experience using the
Bolton TREO device for FEVAR. This device provides for a highly efficient and technically successful procedure in the majority of patients. Procedural and fluoroscopy times are low even in the setting of high complexity. Technical success rates and simplification of the FEVAR procedure make this approach a preferred technique for a majority of patients.

Table 1: Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (yrs)</td>
<td>74.7</td>
<td></td>
</tr>
<tr>
<td>Male Sex</td>
<td>14</td>
<td>70%</td>
</tr>
<tr>
<td>BMI (kg/cm²)</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>15</td>
<td>75%</td>
</tr>
<tr>
<td>CAD</td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>CHF</td>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>17</td>
<td>85%</td>
</tr>
<tr>
<td>COPD</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td>Chronic Renal Insufficiency</td>
<td>5</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 2: Procedural Details

<table>
<thead>
<tr>
<th>Procedural Detail</th>
<th>Value / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Procedure (min / SD)</td>
<td>128 +/- 39.7</td>
</tr>
<tr>
<td>Length of Anesthesia (min / SD)</td>
<td>176 +/- 44.3</td>
</tr>
<tr>
<td>Total Fluoroscopy Time (min / SD)</td>
<td>31.7 +/- 15.6</td>
</tr>
<tr>
<td>EBL (mL)</td>
<td>76.5 +/- 54.6</td>
</tr>
<tr>
<td>Contrast Usage (mL / SD)</td>
<td>105 +/- 16.7</td>
</tr>
<tr>
<td>Anesthesia (General)</td>
<td>95%</td>
</tr>
</tbody>
</table>
Traumatic Superior Mesenteric Artery Injuries: Analysis of Incidence, Morbidity and Mortality Compared to Other Visceral Arteries

University of California, Irvine, Orange, CA, USA.

Objectives: Traumatic celiac, superior mesenteric artery (SMA) and inferior mesenteric artery (IMA) injuries are often grouped together as major visceral arteries with an incidence ranging from 0.01-1%. These injuries have mortality rates ranging from 38-50% for celiac injuries and 33-67% for SMA injuries. No large series have investigated the mortality rate of IMA injuries. We hypothesize that SMA injury leads to a higher risk of mortality in adult trauma patients.

Methods: The Trauma Quality Improvement Program was queried for patients with single visceral injury to either the celiac, SMA, or IMA. A multivariable logistic regression model was used for analysis.

Results: From 1,403,466 patients, 1,762 had single visceral artery injuries with 39.7% involving the celiac artery, 50.5% involving the SMA, and 8.1% involving the IMA. Compared to celiac and IMA injuries, SMA injuries had similar median age (38 years vs 40 years, p=0.48), percentage male (78.4% vs 80.2%, p=0.36), median injury severity score (21 vs 22, p=0.59) but higher percentage of severe (grade >3) abbreviated injury scale for abdomen (57.5% vs 42.5%, p<0.001) [Table 1]. Combined mortality for patients with visceral artery injury was 20%. Compared to celiac and IMA injuries, those with a SMA injury had a longer length of stay (9 days vs 10 days, p=0.01), and higher rates of concurrent bowel resection (40.9% vs 30.6%, p<0.001), packed red blood cell transfusions > 6 units in the first four hours (13.6% vs 8.9%, p<0.001), deep venous thrombosis (6.3% vs 4.1% p=0.04) and overall mortality (23.7% vs 16.3%, p<0.001) [Table 2]. After controlling for covariates, traumatic SMA injury increased risk of mortality (OR 1.72, CI=1.24-2.37, p<0.001) in adult trauma patients, while celiac (OR 1.02, CI 0.66-1.57, p=0.94) and IMA (OR 0.49, CI 0.17-1.38, p=0.18) injury did not. Penetrating SMA injury increased risk of mortality (OR 3.65, CI=2.01-5.45, p<0.001) while blunt force SMA injury did not increase risk of mortality (OR 1.22, CI=0.81-1.85, p=0.34).
Conclusion: Compared to injuries of the celiac and IMA, SMA injury is associated with a higher rate of concurrent bowel resection, DVT, PRBC transfusions and overall mortality. Moreover, penetrating SMA injury nearly triples the rate of mortality in adult trauma patients while blunt SMA injury does not increase mortality.

Table 1. Demographics of adult trauma patients with visceral artery injury

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Celiac (n=698)</th>
<th>p-value</th>
<th>SMA (n=689)</th>
<th>p-value</th>
<th>IMA (n=142)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, year, median (IQR)</td>
<td>40 (28)</td>
<td>0.44</td>
<td>30 (29)</td>
<td>0.46</td>
<td>39 (29)</td>
<td>0.92</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>566 (79.5%)</td>
<td>0.84</td>
<td>607 (78.4%)</td>
<td>0.36</td>
<td>617 (82.4%)</td>
<td>0.34</td>
</tr>
<tr>
<td>ISS, median (IQR)</td>
<td>27 (20)</td>
<td>0.42</td>
<td>21 (15)</td>
<td>0.80</td>
<td>25 (18)</td>
<td>0.05</td>
</tr>
<tr>
<td>Smoker, n (%)</td>
<td>121 (17.3%)</td>
<td>0.17</td>
<td>138 (16.9%)</td>
<td>0.81</td>
<td>131 (10.6%)</td>
<td>0.07</td>
</tr>
<tr>
<td>Blunt force mechanism of injury, n (%)</td>
<td>517 (74.6%)</td>
<td><0.001</td>
<td>573 (84.2%)</td>
<td><0.001</td>
<td>92 (64.8%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Penetrating mechanism of injury, n (%)</td>
<td>175 (25.9%)</td>
<td><0.001</td>
<td>307 (35.8%)</td>
<td><0.001</td>
<td>60 (35.2%)</td>
<td>0.25</td>
</tr>
<tr>
<td>AIS Thorax (grade>3), n (%)</td>
<td>116 (16.4%)</td>
<td>0.22</td>
<td>123 (13.8%)</td>
<td>0.11</td>
<td>23 (15.2%)</td>
<td>0.73</td>
</tr>
<tr>
<td>AIS Abdomen, (grade>3), n (%)</td>
<td>231 (33.3%)</td>
<td><0.001</td>
<td>467 (48.3%)</td>
<td><0.001</td>
<td>54 (44.1%)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

(IQR = interquartile range, ISS = injury severity score, AIS = abbreviated injury scale)

Table 2. Clinical outcomes in adult trauma patients with visceral artery injury

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Celiac (n=698)</th>
<th>p-value</th>
<th>SMA (n=689)</th>
<th>p-value</th>
<th>IMA (n=142)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS, days, median (IQR)</td>
<td>9 (13)</td>
<td>0.01</td>
<td>10 (17)</td>
<td>0.01</td>
<td>10 (16)</td>
<td>0.96</td>
</tr>
<tr>
<td>ICU, days, median (IQR)</td>
<td>6 (11)</td>
<td>0.08</td>
<td>6 (19)</td>
<td>0.10</td>
<td>6 (11)</td>
<td>0.33</td>
</tr>
<tr>
<td>Ventilator, days, median (IQR)</td>
<td>4 (10)</td>
<td>0.70</td>
<td>4 (10)</td>
<td>0.97</td>
<td>4 (9)</td>
<td>0.39</td>
</tr>
<tr>
<td>PRBC transfusion >6 units within 4 hours, n (%)</td>
<td>29 (7.3%)</td>
<td><0.001</td>
<td>121 (13.0%)</td>
<td>0.00</td>
<td>19 (13.4%)</td>
<td>0.41</td>
</tr>
<tr>
<td>Required bowel resection, n (%)</td>
<td>213 (29.3%)</td>
<td><0.001</td>
<td>364 (46.5%)</td>
<td>0.00</td>
<td>53 (37.9%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Unplanned return to OR, n (%)</td>
<td>23 (3.3%)</td>
<td>0.02</td>
<td>49 (6.5%)</td>
<td>0.14</td>
<td>7 (4.9%)</td>
<td>0.87</td>
</tr>
<tr>
<td>Deep vein thrombosis, n (%)</td>
<td>29 (4.1%)</td>
<td>0.10</td>
<td>56 (6.3%)</td>
<td>0.04</td>
<td>7 (4.9%)</td>
<td>0.89</td>
</tr>
<tr>
<td>Pulmonary embolism, n (%)</td>
<td>15 (2.1%)</td>
<td>0.00</td>
<td>21 (2.4%)</td>
<td>0.00</td>
<td>4 (2.8%)</td>
<td>0.96</td>
</tr>
<tr>
<td>Mortality, n (%)</td>
<td>153 (14.1%)</td>
<td><0.001</td>
<td>214 (23.7%)</td>
<td><0.001</td>
<td>28 (19.7%)</td>
<td>0.92</td>
</tr>
</tbody>
</table>

(IQR = interquartile range, LOS = length of stay, ICU = intensive care unit, PRBC = packed red blood cells)
ePoster Presentation #6

Catheter-based Endovascular Interventions for Symptomatic Deep Vein Thrombosis in Children

Peter H. Lin, Philip Lindsey, Angela Echeverria, Brian Thomas, Stanley M. Duchman, Mathew Cheung.

Baylor College of Medicine, Houston, TX, USA.

Objective: The occurrence of deep vein thrombosis (DVT) has been well described in the adult population, and is an infrequent event in children. The objective of this study was to review results with catheter-based interventions in pediatric patients with symptomatic DVT.

Results: Clinical records of all pediatric patients with symptomatic upper or lower extremity DVT who underwent endovascular interventions during a 14 year period were analyzed using a prospectively maintained database. Demographics, clinical presentation, diagnostic evaluation, treatment modalities, and clinical outcome were evaluated.

Methods: Forty-three patients with symptomatic DVT underwent endovascular interventions with thrombectomy and/or thrombolysis in 54 affected limbs (mean age 13.7 years, age range 4 - 18 years, 26 females). Presenting symptoms included pain (88%), swelling (79%), pulmonary embolism (13%), and phlegmasia cerulea dolens (12%). Risk factors for DVT include morbid obesity (44%), hypercoagulable disorders (37%), trauma (16%), cancer (14%), and infection (19%). Mean age of thrombus was 12 days (range 3 to 29 days). Thrombectomy devices used included AngioJet in 33 (77%), Helix Clot Buster in 8 (19%), Fetch catheter in 7 (16%), and Pronto catheter in 4 (9%) cases. Pharmacomechanical thrombectomy using AngioJet device with thrombolytic therapy was performed in 35 patients (81%). Ultrasound-enhanced thrombolytic therapy was utilized in 15 patients (35%). Procedural related adverse event occurs in 8 cases (15%), in which 5 cases were related to hemodynamic compromise or postprocedural hemoglobinuria associated with AngioJet device. Complete DVT resolution was achieved in 45 limbs (83%). Complete symptomatic relief was achieved in 37 patients (86%), with a mean time to resolution of 14.6 days. During a mean follow-up period of 25 months, all patients were free of symptoms or had symptomatic improvement.
Conclusions: Symptomatic lower leg DVT can result in serious morbidities in pediatric patients. Obesity and hypercoagulable disorders are most common risk factors for DVT in children. The AngioJet device should be used with caution as prolong device activation can lead to hemodynamic compromise and postprocedural hemoglobinuria.
Objective: Society for Vascular Surgery Guidelines recommend use of ankle brachial index to establish a diagnosis of peripheral arterial disease and as surveillance after intervention. Guidelines recommend against endovascular interventions (EVI) of isolated infrapopliteal disease for claudication. The objective of this study is to compare practice patterns of EVI for claudication and critical limb ischemia (CLI) in the Medicare population.

Methods: The Medicare 100% sample between 2011 and 2015 was queried for all EVI performed for the diagnosis of claudication, rest pain, ulceration and gangrene. CLI was defined as rest pain, ulceration and gangrene.

Results: A total of 517,951 EVI were performed during the study period: 292,849 (56.5%) for claudication and 225,102 (43.5%) for CLI. In the six months prior to EVI for claudication, 61.6% of procedures had physiologic testing performed compared to 65.3% for procedures for CLI (P<0.001). Between 2011 and 2015, the proportion of EVI performed in the office increased from 8.7% to 24.9% for claudication and from 6.2% to 21.2% for CLI. Atherectomy was performed in 44.9% of EVI for claudication with an increase from 39% in 2011 to 49.6% in 2015 and 58.8% of EVI for CLI with an increase from 52.8% in 2011 to 63.9% in 2015. A significantly higher percentage of procedures including atherectomy were performed in office-based locations compared to inpatient and outpatient facilities with the difference being larger for claudication compared to CLI (P<0.001) (Figure). For claudication, 20.6% of procedures were isolated to the iliac arteries, 49.1% to the femoral/popliteal distribution, 7.7% to the tibial arteries and 22.7% were multilevel, vs 10.6%, 35.9%, 19.7% and 33.9%, respectively in CLI procedures.

Conclusions: The incidence of pre-procedure physiologic testing prior to endovascular interventions in the Medicare population is low overall with
the incidence being significantly lower in claudication vs CLI. The incidence of procedures including atherectomy is dramatically higher in office based locations compared to inpatient/outpatient facilities with a nearly 100% difference in claudication procedures compared to a 60% difference in CLI procedures. An inappropriately high percentage of procedures isolated to the tibial arteries are performed for claudication.
Applicability of the Cook Inner Branched Arch Endograft

Christopher Burke¹, Jarin Kratzberg², Anthony Yoder², Jason Smith¹, Gabriel Aldea¹, Matthew P. Sweet¹.

¹University of Washington, Seattle, WA, USA, ²Cook Research Incorporated, Bloomington, IN, USA.

Objective: Branched endografts are being developed to treat pathology of the aortic arch. The purpose of this study was to evaluate the clinical and anatomic features of patients with arch pathology to better understand the applicability of the Cook inner branched arch endograft (IBAE) as well as how design modifications might expand that applicability.

Methods: This study is a retrospective review of 60 consecutive patients with non-ruptured aortic arch pathology seen in the Cardiothoracic or Vascular surgery clinics at a single institution. Patients were assessed for operative candidacy and grouped into the following categories: standard risk, high risk, and prohibitive risk. Clinical covariates were obtained from chart review. Anatomic measurements were obtained on de-identified contrast enhanced computed tomography scans using a formal measurement protocol by a blinded engineer on a 3-D workstation.

Results: Demographics and clinical outcomes are shown in Table 1. A total of 43 operative interventions were performed. Overall, 27 (45%) patients had anatomy amenable to treatment with the existing IBAE. Inadequate proximal seal length and large ascending aortic diameters were the primary reasons for anatomic unsuitability. Shortening the inner curve seal zone from 25mm to 15mm and increasing the proximal seal zone diameter from 38mm to 42mm increased anatomic suitability to include 49 patients (82%) (Table 2). Of these, 31 were in the high risk cohort and 7 were deemed prohibitive risk; therefore, IBAE would have been strongly considered in these 38 patients (63% of the overall cohort).

Conclusions: Based on anatomic criteria alone, nearly half of patients with aortic arch pathology have anatomy suitable to the Cook IBAE in its current
design. Expanded criteria for proximal seal diameter and inner curve seal may increase anatomic suitability to over 80% of patients with arch pathology. Arch branch vessel anatomy was not a limitation of the applicability of the device. From a clinical standpoint, reserving endovascular repair for those at high or prohibitive risk of open repair, approximately 30% of patients overall would likely benefit from the IBAE in its current form. With the expanded criteria, clinical applicability would rise to approximately 60% of all patients with arch pathology.

Table 1. Clinical and procedural data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standard Risk (n=13)</th>
<th>High Risk (n=40)</th>
<th>Prohibitive Risk (n=7)</th>
<th>Overall (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58.9</td>
<td>62.6</td>
<td>69</td>
<td>62.5</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>69.2</td>
<td>75</td>
<td>42.9</td>
<td>70</td>
</tr>
<tr>
<td>Dissection Present (%)</td>
<td>38.5</td>
<td>62.5</td>
<td>42.9</td>
<td>55</td>
</tr>
<tr>
<td>Previous Cardiac Surgery (%)</td>
<td>0</td>
<td>70</td>
<td>57.1</td>
<td>65</td>
</tr>
</tbody>
</table>

Operative Details

- **Open**: 77.8, 55.9
- **Hybrid**: 22.2, 44.1
- **30d alive/discharge**: 100, 88.2
- **1y alive**: 87.5, 74.2
- **Successful repair 1y**: 87.5, 48.4

Table 2. Anatomic suitability of IBAE

<table>
<thead>
<tr>
<th>Fits Current IFU</th>
<th>Standard Risk (n=13)</th>
<th>High Risk (n=40)</th>
<th>Prohibitive Risk (n=7)</th>
<th>Overall (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (38%) fit with 15mm inner curve and 38mm proximal seal</td>
<td>5 (38%)</td>
<td>24 (60%)</td>
<td>6 (86%)</td>
<td>35 (58%)</td>
</tr>
<tr>
<td>9 (69%) fit with 25mm inner curve and 42mm proximal seal</td>
<td>23 (58%)</td>
<td>23 (58%)</td>
<td>6 (86%)</td>
<td>38 (63%)</td>
</tr>
<tr>
<td>11 (85%) fit with 15mm inner curve and 42mm proximal seal</td>
<td>31 (78%)</td>
<td>7 (100%)</td>
<td>7 (100%)</td>
<td>49 (82%)</td>
</tr>
</tbody>
</table>
CONSTITUTION & BYLAWS
ARTICLE I – NAME
The name of this corporation is the Western Vascular Society (hereinafter the “Society”).

ARTICLE II – PURPOSES
The purpose of the Society shall be: (1) to promote study and discussion of the art and science of vascular surgery; (2) to promote exchange of information among the membership; (3) to hold annual meetings; (4) to do and engage in any and all lawful activities that may be incidental or related to the foregoing and to have and exercise all powers and authority now or hereafter conferred upon not-for-profit corporations under the laws of the State of California.

Notwithstanding the foregoing, (1) no part of the Corporation’s net earnings or assets shall inure to the benefit of any member, director, officer, or other person, except that the Corporation shall be authorized and empowered to pay reasonable compensation for services rendered and to make other payments and distributions in furtherance of the purposes set forth above, and (b) the Corporation shall not carry on any activity not permitted to be carried on by an organization exempt from federal income tax under section 501 (c) (6) of the Internal Revenue Code of 1954, as amended (the “Code”) or the corresponding provision of any further United States revenue statute.

ARTICLE III – MEMBERSHIP
1. The membership of this Society shall be limited to surgeons who practice primarily vascular surgery, who are in good standing in their community as judged by members of the Society. Candidates for membership shall be certified by the American Board of Surgery added Certification in Vascular Surgery or the Royal Canadian College of Surgeons Certificate of Special Competence in Vascular Surgery. In exceptional cases, the Membership Committee may elect to accept equivalent periods of training for formal certification.
2. Members shall be drawn from the Western states, provinces and the Pacific Rim. This will be defined as follows: Alaska, Arizona,
3. There shall be five types of members: active, senior, honorary, associate, and adjunct.

4. Active membership shall consist of the following members of the Organization plus subsequent individuals elected to membership by the Society. The total number of active members shall be limited to 160.

4a. Prospective members should have completed a minimum of three (3) years of practice after vascular surgery training before applying for membership.

4b. The prospective member should meet one or more of the following three (3) criteria in order to be considered for membership:

- Excellence in Clinical Care – this can be reflected by letters from colleagues and collaborators, regional reputation, years in practice, peer-recognition awards (Chief of Staff, senior surgeon in group, HMO recognition award), service on peer-review organizations, case lists and outcomes, community involvement or participation in clinical trials.

- Contributions to Vascular Science – this can be reflected by peer-review publications, non-profit or federal grant support, invited lectures, professorships, faculty appointments, invited publications, participation in clinical trials, device development, active participation in local/regional vascular societies or serving on hospital committees.

- Contributions to Vascular Education – this can be reflected by teaching responsibilities at a vascular or general surgery training program, hospital grand rounds, seminars, proctorship of new vascular procedures or other lectureships.

5. Senior members shall consist of active members who have reached the age of sixty-five (65) or who for reasons of health or other just cause, the Council recommends for classification in this category. Senior members shall not be bound by requirements for attendance at meetings; however, working senior members shall continue to pay annual dues until such time as they have notified...
the Secretary-Treasurer that they have left active practice.

6. Honorary members of the Society shall consist of individuals who have made outstanding contributions in the field of vascular science. Honorary members shall not be bound by the requirements for attendance at meetings, shall have no voting privileges nor shall they be required to pay dues.

7. Associate members of the Society shall consist of those individuals who were previously active members but have moved out of the geographic limits of the Western Vascular Society. Associate members shall not be bound by the requirements for attendance at meetings nor shall they be required to pay dues.

8. Adjunct membership will be granted to those individuals who are not vascular surgeons but have made and continue to make meaningful contributions to the science and practice in the field of vascular disease. This category will include non-M.D.s who are working in the field of research. It will also include physicians who actively practice and publish in the field of non-surgical treatment of vascular diseases. Adjunct members shall not have voting privileges, be able to hold office, participate on standing committees, or be required to pay dues.

9. Prospective members should attend an annual meeting of the Western Vascular Society prior to submitting application for membership. The prospective member is encouraged to attend the annual meeting.

ARTICLE IV - SELECTION OF MEMBERS
Qualification for membership in the Society will be judged primarily upon evidence of a prospective member’s scholarly contributions to the vascular surgery literature.

1. Active Members:
 a. Application forms for membership shall be available only by request of a sponsoring member and shall be provided by the Secretary-Treasurer.
 b. Application forms presenting the curriculum vitae of the candidates and signed by them and the sponsor shall be in the hands of the Secretary-Treasurer at least two (2) months before
the Executive Session at which it is desired that the candidate be considered for election. Applications must be supported by a letter from the sponsor. Additional letters of recommendation from other members are desirable.

c. The Secretary-Treasurer shall send to the Chairman of the Membership Committee these applications with all pertinent data, including supporting letters, at least two (2) months before the annual meeting. The Membership Committee shall review the professional qualifications of the candidates.

d. The list of candidates with data concerning them shall be circulated by the Secretary-Treasurer to all members of the Society at least one (1) month before the annual meeting.

e. The Membership Committee shall meet prior to the annual meeting to review the applications and to make recommendation for membership. The Chairman of the Membership Committee shall meet with the Council for purposes of presenting recommendations of the Membership Committee for review by Council before presenting recommendations to the membership at large at the time of the annual meeting.

f. The names of Candidates recommended by the Council for election shall be submitted by the Secretary-Treasurer to the membership in the annual report at the Executive Session of the Society.

g. Election to membership shall be by secret ballot, by a three-fourths affirmative vote of the membership present and voting at the annual Executive Session.

h. A candidate who fails election at one meeting may be presented for re-consideration of membership at a subsequent meeting by repeating the above process.

2. Honorary members:

a. Any active or senior member may nominate an individual for membership. The name and brief description of the accomplishments of the nominee must be submitted to the Secretary-Treasurer at least six (6) months prior to the annual meeting for circulation to an Honorary Membership Committee, which consists of the three (3) past presidents on the Council.
b. The Honorary Membership Committee shall make its recommendations to the Council.
c. Following its deliberation, the Council may recommend that the candidate’s name be submitted by the Secretary-Treasurer to the membership in the annual report presented at the Executive Session of the Society.
d. Election to membership shall be by secret ballot, by a three-fourths affirmative vote of the membership present and voting at the annual Executive Session.

3. Associate members:
 a. Any member in good standing, who leaves the geographic area of the Western Vascular Society, may request transfer in status to associate membership. If a member fails to request such transfer he/she will automatically be dropped from the membership roster.

4. Adjunct members:
 a. The process of election shall be the same as for active members.

ARTICLE V – BOARD OF DIRECTORS (“COUNCIL”)
1. The Board of Directors of the Society shall be called the Council.
2. The Council shall be composed of the President, the President-Elect, the Secretary-Treasurer, the Recorder, and the three (3) most recent available past presidents.
3. The Council shall be the governing body of the Society and shall have full power to manage and act on all affairs of the society except as follows:
 a. It may not without the approval of the Society membership at an annual executive session alter the initiation fees or annual dues, or levy any assessments against the membership, except that it may, in individual cases, waive annual dues or assessments.
 b. It may not amend the Articles of Incorporation or Bylaws.
 c. It may neither elect new members nor alter the status of existing members, other than to apply the provisions of Article XI.
4. The President of the Society shall serve as Chairman of the Council and the Secretary-Treasurer of the Society as its Secretary.
5. Meetings of the Council shall be held at the call of the President of the Society, and each member of the Council must be notified in writing of the time and place of each such meeting.

6. The annual meeting of the Council shall precede the Executive Session of the Society membership.

7. A majority of the voting members of the Council shall constitute a quorum for the transaction of business.

8. The act of a majority of the members of the Council present at a duly called meeting at which a quorum is present shall be the act of the Council, unless the act of a greater number of required by applicable statute, the Articles of Incorporation or these Bylaws.

9. Any action which is required by law or the Articles of Incorporation or these Bylaws to be taken at a meeting of the Council, or any other action which may be taken at a meeting of the Council, may be taken without a meeting if a consent in writing, setting forth the action taken, shall be signed by all the members of the Council entitled to vote with respect to the subject matter thereof. Any consent signed by all the members of the Council shall have the same force and effect as a unanimous vote of a duly called and constituted meeting of the Council.

ARTICLE VI – OFFICERS

1. The Officers of the Society shall be a President, a President-Elect, a Secretary-Treasurer, and a Recorder, all to be elected as provided in these Bylaws. Said officers shall serve ex-officio as voting members of the Council.

2. All Officers of the Society shall be elected for terms of one (1) year each. Secretary-Treasurer and Recorder both serve three (3) year terms. The President may not serve more than one (1) term.

3. Officers of the Society shall be nominated by the Nominating Committee that shall present the slate to the membership at the Executive Session of the annual meeting. Additional nominations may be made from the floor of the Executive Session each year. The election shall take place at the Executive Session and election shall be by a majority of the votes cast.

4. The President shall preside at meetings of the Society and the
Council, preserve order, regulate debates, announce results of elections, appoint committees not otherwise provided for, sign Certificates of Membership, and perform the duties of the President’s office.

5. The President-Elect, in the absence or incapacity of the President, shall perform the duties of the President’s office.

6. In the absence of both the President and the President-Elect, the Chair shall be taken by a Chairman Pro Tem, elected by such members of the Council as are present.

7. The Secretary-Treasurer shall ensure proper storage of the minutes of the meetings of the Society and Council, attest all official acts requiring certification; notify officers and members of their election; conduct correspondence; take charge of all papers not otherwise provided for. At least thirty (30) days but not more than forty (40) days prior to each annual or special meeting he shall ensure issue to all members of the Society a program of the forthcoming meeting. He/she shall compile a written report to be read at the annual Executive Session of the Society, in which shall be included a list of candidates proposed for membership, as approved by Council. He/she shall ensure receipt of all moneys and funds belonging to the Society; ensure payment of all bills; ensure rendering of bills for dues and assessments as soon as possible after the annual meeting; and report to the Council at each annual meeting the names of all members in arrears as to dues. He shall prepare a written report of the finances of the Society to be presented at the Council Meeting and at the Executive Meeting.

8. The Historian shall serve a one-year term and will be appointed by the President. It shall be the duty of the Historian to assemble and preserve the Archives of the Society for storage and reference. The archives shall consist of the roster of the members of the society since its inception and such photographs as are available. It shall be his/her duty to secure and file a photograph of each new member. At the request of the President, the Historian may be asked to provide an appropriate historical comment at either the executive session or the regular meeting. The records of the Western Vascular Society are preserved at the UCLA Medical Center by the archivist of the Louise Darling Library.

9. The Recorder shall ensure receipt of all papers and reports of
discussions on papers presented before the Society. The Recorder, together with the Program Committee, shall ensure submission of manuscripts to the Journal of Vascular Surgery for publication.

ARTICLE VII – COMMITTEES

1. Standing committees of the Society shall consist of a Membership Committee, a Nominating Committee, a Program Committee, and a Local Arrangements Committee for the annual meeting.

2. The Membership Committee shall consist of three (3) members who shall be appointed by the President to serve overlapping terms of three (3) years each. The Secretary-Treasurer shall be an ex officio member of the membership committee. The senior member in service on this Committee shall be the Chairman. Nominations to the Membership Committee shall be made by the Nominating Committee which shall present the slate to the membership at its annual business meeting. Election shall be by a majority of votes cast at the Executive Session. The functions of the Committee shall be to pass upon the professional and ethical qualifications of the applicants and to advise the membership of these recommendations.

3. The Nominating Committee shall consist of the three (3) most recent available past Presidents. The Committee shall be appointed by the President one (1) month before the annual meeting. Its function shall be to make up a slate of officers to be presented at the annual business meeting to the membership.

4. The Program Committee shall consist of four (4) members who shall be appointed by the President to serve overlapping terms of four (4) years each. The senior member in term of service on this Committee shall be the Chairman. The President, Secretary-Treasurer and Recorder shall be ex officio members of the Program Committee. The function of the Program Committee shall be to solicit presentations from members and other individuals and to make up the program for the annual meeting. The appointed members of the Program Committee shall serve as an advisory committee to act, with the Recorder, to ensure editorial review of the submitted manuscripts.

5. The Chairman of the Local Arrangements Committee for the
annual meeting shall be appointed by the President and the
members of the Committee shall be appointed by the Chairman.
These individuals will consist of members resident in the general
locality in which the annual meeting is to be held, together with the
President, the Secretary-Treasurer, acting ex officio. The function of
this Committee shall be the making of the general arrangements for
the annual meeting.

6. The Council may from time to time establish such other
Committees as it deems advisable. Each such Committee shall
consist of such persons and shall have such duties and the Council
upon establishment of the Committee from time to time may
designate powers as thereafter. Unless otherwise provided by the
Council, the President shall appoint the members of each such
Committee.

7. Any vacancy occurring among the members of any elected
Committee of the Society shall be filled by appointment by the
President. The Appointee will serve until the next annual meeting
of the Society membership.

ARTICLE VIII – MEETINGS
1. The annual meeting of the Society shall be held at a time and place
to be determined by the Council at least one year in advance.

2. The Council shall meet on the day prior to the annual meeting, at a
time and place designated by the President. The Chairmen of
the Membership Committee, the Nominating Committee and the
Local Arrangements Committee shall meet with the Council in an
advisory capacity.

3. Twenty (20) voting members present in person shall constitute a
quorum at a meeting of the membership.

4. The vote of a majority of the votes entitled to be cast by the
members present at a duly called meeting at which a quorum is
present shall be necessary for the adoption of any matter voted upon
by the members, unless a greater proportion is required by
the applicable statute, the Articles of Incorporation, or the Bylaws.

5. Members may not cast their votes by proxy.

6. The Executive Session of the Society, attendance at which shall be
limited to active, senior and honorary members, shall be held
at a time and place to be set by the President. The business of the Society shall be conducted at that time.

7. The scientific session of the annual meeting shall consist of original presentations of papers and the discussion of these papers. An active or senior member must be a participant, co-author or sponsor of each presentation selected.

8. Special meetings of the Society may be called at any time by the President. The President must call a special meeting whenever he is requested to do so in writing by ten (10) members of the Society in good standing.

9. Notice of any Executive Session of any annual or special meeting of the Society shall be given to each member of the Society not less than thirty (30) nor more than forty (40) days prior to the Executive Session by written or printed notice delivered personally or by mail, by or at the direction of the Council, the President or the Secretary-Treasurer. Such notice shall state the place, day and hour of the Executive Session and in the case of a special meeting shall also state the purpose or purposes for which the Executive Session is called.

10. The Council may, by majority vote, revoke the membership of any active member who shall have been absent from three (3) consecutive meetings of the Society without providing the Secretary-Treasurer with an acceptable written explanation of such absence. An active member shall receive a warning letter from the Secretary-Treasurer following two (2) consecutive unexcused absences from the annual meetings, and the Secretary-Treasurer shall, within thirty (30) days after revocation of any active membership pursuant to this section, send written notice of such action to the individual whose active membership has been so revoked. In addition, in order to emphasize the importance of scholarly participation, it shall be the requirement for each member to be a named author of at least one abstract during a four year term or to be a named discussant of a paper selected for presentation. An active member shall receive a warning letter from the Secretary-Treasurer following three (3) consecutive years in which the member has failed to participate as described above. The Secretary-Treasurer shall, within thirty-(30) days after revocation of active membership pursuant to this section, send
written notice of such action to the individual whose active membership has been so revoked. Any person whose active membership has been revoked by the Council pursuant to this section may, within six (6) months after such revocation, send to the Secretary-Treasurer a written request that the Council at its next meeting reconsider its decision. Such a request must be accompanied by a written statement for the reasons for the consistent absence or lack of participation from annual meetings of the Society. If the Council, upon reconsideration, determines by a majority vote that reinstatement is appropriate, the individual shall be reinstated as an active member upon payment in full of any outstanding dues or other financial obligations to the Society, including any such obligations which may have arisen during the period in which the revocation was in effect.

11. The society’s current President and Recorder will moderate the first Scientific Session of the Annual Meeting. The incoming President-Elect and current Recorder will moderate the final Scientific Session of the Annual Meeting. All other moderators for all other sessions will consist of and be chosen by the Program Committee.

ARTICLE IX – INVITED GUESTS

1. A member of the Society may invite one or more guest(s) to attend the Annual Meeting of the Society. Should a member wish to tender an invitation, formal request must be made to the Secretary-Treasurer to send a written invitation to the individual identified by the member. No guest will be admitted to the scientific sessions and/or social events without a formal invitation and active registration for the annual meeting.

2. The names of all guests attending the Annual Meeting shall be entered under a separate heading in the attendance list.

3. All invited guests shall be given the privilege of the floor by the President but shall not be present at the Executive Session.

ARTICLE X – FEES AND DUES

1. Initiation fees, dues and assessments shall be levied by the Council
and approved by the membership at the annual Executive Session.

2. Any member of the Society in arrears as to dues for one (1) year shall be notified of that fact by the Secretary- Treasurer, by email and registered letter, which shall contain a copy of this Section 2. If the dues are not paid before the next annual Council meeting, or some reasonable explanation of the delinquency is not forthcoming, the name of the delinquent member shall be presented at the Council meeting and on a majority vote of the Council the name may be stricken from the membership list. The Council may reinstate the delinquent member upon payment of the dues in arrears.

ARTICLE XI – RESIGNATIONS AND DISCIPLINE
1. Resignation of members not in arrears as to dues may be accepted at any annual meeting of the Society by a majority vote of the members present.

2. Charges of unprofessional or unethical conduct may be brought against any member of the Society by a written complaint signed by three (3) members of the Society and delivered to the Secretary- Treasurer. The Council shall establish the rules governing disciplinary proceedings based upon such charges from time to time.

ARTICLE XII – PAPERS AND REPORTS
1. All papers and reports read before the Society shall be submitted to the Journal of Vascular Surgery prior to the time of their presentation at the Annual Meeting. The Recorder shall be responsible for ensuring the submission of these manuscripts.

2. No paper shall be submitted for publication as having been read before the Society unless it has been read before the Society.

ARTICLE XIII – PROCEDURE
The proceedings of the Society shall be conducted under Roberts Rules of Order Newly Revised.
ARTICLE XIV – CERTIFICATE OF MEMBERSHIP
Every elected member of the Society shall be entitled to a Certificate of Membership signed by the President and the Secretary-Treasurer and bearing the seal of the Society.

ARTICLE XV – SEAL
This Society shall make, have, and use a seal bearing the name of the Society, the words “Corporate Seal, California,” and such other device and description, as the Society shall deem proper.

ARTICLE XVI – NOTICE AND WAIVER OF NOTICE
1. Whenever, under applicable law, these Bylaws, or resolution of the Council, notice is required to be given to any member, Council member or Officer, such notice may be given in writing, by e-mail or standard mail, addressed to such member, Council member or Officer, at his or her address/electronic address as it appears on the records of the Society. Such mailed notice shall be deemed to be given when deposited in the United States Mail in a sealed envelope so addressed, with postage therein prepaid.

2. Whenever, under applicable law, these Bylaws, or resolution of the Council, any notice is required to be given, a waiver thereof in writing, signed by the person or persons entitled to such notice. Whether before or after the time stated therein, shall be deemed equivalent to the giving of such notice. In addition, the attendance of a member or Council member at any meeting shall constitute a waiver of notice of such meeting, except where an individual attends the meeting for the express purpose of objecting to the transaction of any business because the meeting is not lawfully called or convened.
ARTICLE XVII – INDEMNIFICATION

1. To the full extent in accordance with the procedure prescribed by the General Not-For-Profit Corporation Act, the Society shall indemnify any and all members of the Council (which members shall hereinafter in this Article be referred to as “Directors”) and any and all officers, employees, agents and representatives of the Society for certain expenses and other amounts paid in connection with legal proceedings in which any such person become involved by reason of their serving in any such capacity for the Society.

2. Upon specific authorization by the Council, the Society may purchase and maintain insurance on behalf of any or all Directors, Officers, employees, agents or representatives of the Society against any liability asserted against any such person and incurred in any such capacity, or arising out of the status of serving in any such capacity, whether or not the Society would have the power to indemnify them against such liability under the provisions of Section 1 of this Article.

ARTICLE XVIII – AMENDMENT

These Bylaws may be amended by a three-fourths vote of the members present and voting at a properly called and convened Executive Session at an Annual or Special Meeting of the Society, provided that the proposed Amendment has been submitted to the Secretary-Treasurer by at least three (3) voting members of the Society at least three (3) months prior to the Executive Session of the Society. The Secretary-Treasurer shall mail the proposed Amendment at least thirty (30) days prior to the Executive Session, accompanied by notice that such Amendment will be acted upon that Executive Session.

ARTICLE XIX – RULES AND REGULATIONS

The Society may enact from time to time rules and regulations that will govern the actions of the Society. Such Rules and Regulations shall be enacted, amended or deleted by a majority (>50%) vote of those attending the annual business meeting. Proposed rules and regulations require notification of the membership no less than 30 days prior to
the annual meeting. Amendments to a proposed Rule and Regulation made at the time of the business meeting may be voted upon at the same business meeting and do not require an additional 30 day notification of members. All Rules and Regulations must be in conformity with the bylaws of the Society.

Amended January 2017
Ahmed M. Abou-Zamzam, M.D.
(Active Member)
Loma Linda University Medical Center
11175 Campus Street, #21123
Loma Linda, CA 92354
Tel: 909-558-4354
Fax: 909-558-0348
azamzam@llu.edu

Sam S. Ahn, M.D. (Active Member)
University Vascular Associates
1082 Glendon Avenue
Los Angeles, CA 90024
Tel: 310-208-7341
Fax: 310-209-2113
ssahn100@gmail.com

Dominic Albo, Jr., M.D. (Retired)
5458 Cottonwood Club Drive
Salt Lake City, UT 84117
Tel: 801-585-5150
Fax: 801-277-1260
dominic.albo@hsc.utah.edu

Janet L. Albright, M.D.
(Associate Member)
General & Vascular Associates
1500 East 2nd Street, Suite 206
Reno, NV 89502
Tel: 775-789-7000
Fax: 775-789-7040
vjan@sbcglobal.net

Jason Q. Alexander, M.D.
(Active Member)
Vascular Specialists of Minnesota
920 E. 28th Street, Suite 300
Minneapolis, MN 55407
Tel: 612-863-6800
Fax: 612-863-6006
jason.alexander@allina.com

Charles A. Andersen, M.D.
(Senior Member)
Madigan Army Medical Center, Surgery
9040 Fitzsimmons Drive
Tacoma, WA 98431
Tel: 253-968-2424
Fax: 253-968-0232

George Andros, M.D. (Retired)
4744 Cahuenga Blvd.
Toluca Lake, CA 91602
Tel: 818-766-0463
gandros2@gmail.com

Niren Angle, M.D. (Active Member)
1320 El Capitan Drive; Suite 120
Danville, CA 94528
Tel: 858-603-1720
Fax: 619-543-2615
nangle@niren-angle.net
2018 MEMBERSHIP continued

Zachary M. Arthurs, M.D.
(Active Member)
San Antonio Military Medical Center
3551 Roger Brook Drive
Ft. Sam Houston, TX 78234
Tel: 210-916-1174
arthursz@mac.com

J. Dennis Baker, M.D. (Retired)
VA Medical Center, Surg Serv 10H2
11301 Wilshire Boulevard
Los Angeles, CA 90073-1003
Tel: 310-268-3135
dennis.baker@va.gov

John N. Baldwin, M.D. (Retired)
20072 Forest Vista Drive
Twain Harte, CA 95383
Tel: 209-586-1127
jnbaldwin@mlode.com

Jeffrey L. Ballard, M.D. (Active Member)
Southern California Vascular Associates
1310 W. Stewart Drive, Suite 503
Orange, CA 92868
Tel: 714-532-0793
Fax: 714-516-1932
jeffreyballard@sbcglobal.net

Dennis F. Bandyk, M.D.
(Senior Member)
UCSD
9434 Medical Center Drive, Mail Code 7403
La Jolla, CA 92037
Tel: 858-657-7404
Fax: 858-657-5033
dbandyk@ucsd.edu

Hugh G. Beebe, M.D. (Retired)
Jobst Vascular Center
2109 Hughes Drive, Suite 400
Toledo, OH 43606
Tel: 419-291-2088

Donald D. Bell, M.D.
(Associate Member)
205 Westridge Drive
Norfolk, NE 68701
Tel: 402-371-9270
Fax: 402-371-9270
nancy9270@msn.com

R. Thomas Bergman, M.D.
(Active Member)
Confluence Health
1201 S. Miller Street
Wenatchee, WA 98801
Tel: 509-663-8711
Fax: 509-665-2315
tom.bergman@confluencehealth.org
2018 MEMBERSHIP continued

Scott S. Berman, M.D.
(Active Member)
Carondelet Heart and Vascular Institute Physicians
1815 West St. Mary’s Road, #145
Tucson, AZ 85745
Tel: 520-628-1400
Fax: 520-628-4863
bermanaz@gmail.com

Victor M. Bernhard, M.D.
(Retired)
3627 Grand Valley Canal Road
Palisade, CO 81526
Tel: 970-464-4653
Fax: 970-464-7376

George A. Berni, M.D.
(Senior Member)
Harrison Healthpartners Thoracic & Vascular Clinic
1225 Campbell Way, Suite 101
Bremerton, WA 98310
Tel: 360-479-4203
Fax: 360-478-7240
George.Berni@Harrisonmedical.org

Christian Bianchi, M.D.
(Active Member)
11201 Benton Street
Loma Linda, CA 92357
Tel: 909-583-6064
Fax: 909-777-3291
Christian.Bianchi@va.gov

F. William Blaisdell, M.D.
(Retired)
875 La Playa Street, Apt 482
San Francisco, CA 94121-3261
Tel: 415-751-7223
fwblais@gmail.com

Benjamin S. Brooke, M.D.
(Active Member)
University of Utah, Salt Lake City, UT
30 North 1900 East
#3C344 SOM
Salt Lake City, UT 84132
Tel: 801-581-8301
Fax: 801-581-3433
Benjamin.Brooke@hsc.utah.edu

William H. Brown, M.D. (Retired)
575 Hayne Road
Hillsborough, CA 94010
Tel: 650-342-6465
Fax: 650-342-0167
clare@karenbrown.com

Theodore J. Bunt, M.D.
(associate Member)
University of Tennessee at Memphis, Memphis VAMC, Dept. of Surgery
1030 Jefferson
Memphis, TN 38104
Theodore.Bunt@va.gov
Michael T. Caps, M.D.
(Active Member)
Kaiser Moanalua Medical Center
3288 Moanalua Road
Honolulu, HI 96819
Tel: 808-432-8347
Fax: 808-432-8356
michael.t.caps@kp.org

John G. Carson, M.D.
(Active Member)
University of California, Davis Medical Center-Vascular Center
4860 Y Street, Suite 3400
Sacramento, CA 95817
Tel: 916-734-0448

Kevin M. Casey, M.D.,FACS
(Active Member)
Naval Medical Center
34730 Bob Wilson Drive
San Diego, CA 92134
Tel: 619-208-5531
Fax: 619-532-7582
kevin.m.casey28.mil@mail.mil

Venita Chandra, M.D.
(Active Member)
Stanford University Medical Center
300 Pasteur Drive, Ste. H-3635
Stanford, CA 94305
Tel: 650-725-4422
Fax: 650-498-6044
vchandra@stanford.edu

Robert W. Chang, M.D.
(Active Member)
The Permanente Medical Group
1200 El Camino Real
S. San Francisco, CA 94080
Tel: 650-742-2958
robert.w.chang@kp.org

Jerry Chu-Lih Chen, M.D.
(Active Member)
Vancouver General Hospital
2775 Laurel Street, Room 4203
Vancouver, BC, V5Z 1M9
Canada
Tel: 604-875-5535
Fax: 604-875-5542
Jerry.Chen@vch.ca

Stephen W.K. Cheng, M.D.
(Active Member)
University of Hong Kong Medical Center, Queen Mary Hospital Surgery, 2/F Professional Block
102 Pokfulam Road, Hong Kong - SAR
China
Tel: 85 222554962
Fax: 85 222554961
wkcheng@hku.hk
Wallace B. Chung, M.D.
(Retired)
505-6015 Iona Drive
Vancouver, BC, V6T 2J4 Canada
Tel: 604-224-7282
Fax: 604-224-1679
wallacobchung@gmail.com

Timothy A.M. Chuter, M.D.
(Active Member)
University of California, San Francisco
400 Parnassus Avenue, A-581, Box 0222
San Francisco, CA 94143-0222
Tel: 415-353-4366
Fax: 415-353-4370
chutert@surgery.ucsf.edu

Ismar Cintora, M.D. (Retired)
3033 North Central Avenue, Suite 610
Phoenix, AZ 85012-2819
Tel: 602-241-9971
Fax: 602-277-3910

William D. Clouse, M.D.
(Active Member)
Massachusetts General Hospital
Div of Vascular-Endovascular Surgery, 15 Parkman Street, WACC #440
Boston, MA 02114-3117
Tel: 617-726-3567
Fax: 617-726-8230
wclouse@partners.org

C. William Cole, M.D. (Retired)
P. O. Box 1505
Port Elgin, NB
Canada E4M3Y9
Tel: 323-783-1962
cwmcole@hotmail.com

Michael S. Conte, M.D.
(Active Member)
University of California, San Francisco
400 Parnassus Street, Room A-581
San Francisco, CA 94143
Tel: 415-353-4366
Fax: 415-353-4370
michael.conte2@ucsf.edu

Sheila M. Coogan, M.D.
(Associate Member)
6400 Fannin, Ste. 2850
Houston, TX 77030
Tel: 713-486-5100
Fax: 713-512-7200
sheila.m.coogan@uth.tmc.edu
Paul R. Cordts, M.D. (Associate Member)
2908 Oakton Ridge Circle
Oakton, VA 22124-1646
Tel: 915-539-5885
paul.cordts@gmail.com

David V. Cossman, M.D. (Senior Member)
8631 West Third Street, Suite 615E
Los Angeles, CA 90048
Tel: 310-652-8132
DVC254@aol.com

Jack L. Cronenwett, M.D. (Honorary)
Dartmouth Hitchcock Clinic
1 Medical Center Drive
Lebanon, NH 03756-0001
Tel: 603-650-8677
Fax: 603-650-4973
j.cronenwett@hitchcock.org

Thomas K. Curry, M.D. (Active Member)
Madigan Army Medical Center
9040 Fitzsimmons Drive, MCHJ-SV
Tacoma, WA 98431
Tel: 253-968-2290
Fax: 253-968-5997
thomas.curry@yahoo.com

Ronald L. Dalman, M.D. (Active Member)
Stanford University Medical Center, Vasc Surg
300 Pasteur Drive, H3642
Stanford, CA 94305-5642
Tel: 650-723-2031
Fax: 650-498-6044
rld@stanford.edu

Joseph A. Davis, M.D. (Active Member)
Providence Inland Vascular Institute
122 W 7th #420
Spokane, WA 99204
Tel: 509-838-8286
Fax: 509-625-1888
josephadavis@comcast.net

David L. Dawson, M.D. (Active Member)
University of California Davis Health System
UC Davis Vascular Center
4860 Y Street
Suite 3400
Sacramento, CA 95817
Tel: 916-734-8122
Fax: 916-734-2026
ddawson@ucdavis.edu
Robert D. DeFrang, M.D.
(Active Member)
Providence Health & Services
1330 Rockefeller Avenue, Suite 520
Everett, WA 98201
Tel: 425-297-5200
Fax: 425-297-5210
defrang@mac.com

Brian G. DeRubertis, M.D.
(Active Member)
Gonda Vascular Center
200 Medical Plaza, Suite 510-6
Los Angeles, CA 90095
Tel: 310-825-3684
Fax: 310-206-0189
bderubertis@mednet.ucla.edu

Giacomo A. DeLaria, M.D.
(Retired)
PO Box 9755
Rancho Santa Fe, CA 92067
Tel: 858-759-0820
gdelaria@aol.com

Christian deVirgilio, M.D.
(Active Member)
Harbor-UCLA Medical Center
1000 W. Carson Street
Torrance, CA 90509
Tel: 310-222-2531
Fax: 310-782-1562
cdevirgilio@labiomed.org

Ralph G. DePalma, M.D. (Retired)
810 Vermont Ave., NW (111B)
Washington, DC 20420
Tel: 202-273-8470
Fax: 202-273-9108

Ralph B. Dilley, M.D. (Retired)
7236 Country Club Drive
La Jolla, CA 92037
Tel: 858-454-7667
rhilley34@gmail.com

Ellen Lyman-Thomason Derrick, M.D.,MPH,FACS (Active Member)
Providence Everett Hospital
6541 50th ave ne
Seattle, WA 98115
ellenderrick2016@gmail.com

Sherwood M. Dixon, M.D.
(Senior Member)
General & Vascular Associates
1500 East Second Street, Suite 206
Reno, NV 89502
Tel: 775-789-7000
Fax: 775-789-7040
sherwooddixon@gmail.com
Carlos E. Donayre, M.D.
(Active Member)
Harbor-UCLA Medical Center
2324 Colt Road
Rancho Palos Verdes, CA 90275
Tel: 310-213-4878
Fax: 310-787-1889
cdonayre@cox.net

James M. Edwards, M.D. (Retired)
Oregon Health Sciences University
3181 Sam Jackson Park Road, OP11
Portland, OR 97201
Tel: 503-494-7593
Fax: 503-494-4324
removed by request

Charles M. Eichler, M.D.
(Active Member)
University of California, San Francisco
400 Parnassus Ave, Room A-581,
Box 0222
San Francisco, CA 94143
Tel: 415-353-4366
Fax: 415-353-4370
charles.eichler@ucsf.edu

Bo G. Eklof, M.D., PhD
(Associate Member)
Batteritorget 8
Helsingborg, 25270
Sweden
Tel: 46 42260728
moboek@telia.com

Travis L. Engelbert, M.D.
(Active Member)
Colorado Permanente Medical Group
2045 Franklin St
Denver, CO 80205
Tel: 303-861-3688
Fax: 303-831-3741
travis.l.engelbert@kp.org

Alik Farber, M.D.
(Associate Member)
82 Shady Hill Road
Weston, MA 02493
Tel: 310-968-6083
alik.farber@bmc.org

Steven Farley, M.D.
(Active Member)
UCLA
200 Medical Plaza, Suite 526
Los Angeles, CA 90095
Tel: 310-825-9156
sfarley@mednet.ucla.edu

Brian Lee Ferris, M.D.
(Active Member)
Lake Washington Vascular, PLLC
1135 116th Ave NE Suite 305
Bellevue, WA 98004
Tel: 425-453-1772
Fax: 425-453-0603
drferris@lkvw.com
D. Preston Flanigan, M.D.
(Senior Member)
VISOC
1140 West La Veta Avenue, Suite 850
Orange, CA 92868
Tel: 714-560-4450
Fax: 714-560-4455
knife@cox.net

Thomas J. Fogarty, M.D. (Retired)
Stanford University Hospital
3270 Alpine Road
Portola Valley, CA 94028
Tel: 650-854-1822
Fax: 650-854-2778
tjf@fogartybusiness.com

Robert F. Foran, M.D. (Retired)
705 North Elm Drive
Beverly Hills, CA 90210
Tel: 310-652-8132
Fax: 310-659-3815
foran705@aol.com

Richard J. Fowl, M.D.
(Active Member)
Mayo Clinic Arizona
5777 E Mayo Blvd
Phoenix, AZ 85054
Tel: 480-342-2868
Fax: 480-342-2866
fowl.richard@mayo.edu

David A. Frankel, M.D.
(Active Member)
Scripps Clinic and Green Hospital
10666 N. Torrey Pines Road
La Jolla, CA 92037
Tel: 858-554-8988
frankel.david@scrippshealth.org

Julie A. Freischlag, M.D.
(Active Member)
Wake Forest Baptist Medical Center
Office of the Chief Executive Officer
Medical Center Boulevard
Winston-Salem, NC 27157-1021
Tel: 336-716-3408
Fax: 336-716-2067
jfreisch@wakehealth.edu

William R. Fry, M.D.
(Associate Member)
Roanoke Memorial Hospital
1906 Bellevue Avenue
Roanoke, VA 24014
Tel: 540-981-7434
Fax: 540-981-8681

Roy M. Fujitani, M.D.
(Active Member)
UCI
333 City Blvd. West, Suite 1600
Orange, CA 92868-2984
Tel: 714-456-5452
Fax: 714-456-6070
rmfujita@uci.edu
2018 MEMBERSHIP continued

Joel J. Gagnon, M.D. (Active Member)
Vancouver General Hospital
4219-2775 Laurel Street
Vancouver, BC, V5Z 1M9
Canada
Tel: 604-875-5819
Fax: 604-875-5542
joel.gagnon@vch.ca

Spencer Galt, M.D. (Active Member)
Intermountain Medical, Physician Specialists PC
5323 S. Woodrow Street, Suite 102
Murray, UT 54109
Tel: 801-262-2647
Fax: 801-262-8118
sgalt@mtnmedical.com

Joy Garg, M.D. (Active Member)
Kaiser Permanente
2500 Merced St.
San Leandro, CA 94577
Tel: 510-673-4806
jgargmd@gmail.com

Warren Gasper, M.D. (Active Member)
University of California San Francisco
Division of Vascular and Endovascular Surgery
400 Parnassus Ave, Box 0222
San Francisco, CA 94143
Tel: 415-750-2115
warren.gasper@ucsf.edu

Alan B. Gazzaniga, M.D. (Retired)
12102 Red Hill Ave.
Santa Anna, CA 92705-3100
Tel: 714-997-2224
Fax: 714-639-7682

Hugh A. Gelabert, M.D. (Active Member)
UCLA School of Medicine
200 Medical Plaza
UCLA Vascular Division
Suite 510
Los Angeles, CA 90024-6904
Tel: 310-206-5594
Fax: 310-206-2472
hgelabert@mednet.ucla.edu

Andrew T. Gentile, M.D. (Active Member)
Providence Health & Services
10490 SE Hillside Ct
Happy Valley, OR 97086
Tel: 503-384-2184
tucsonmonsoon@aol.com
Bruce L. Gewertz, M.D.
(Senior Member)
Cedars Sinai Medical Center
8700 Beverly Boulevard, Suite 8215
NT
Los Angeles, CA 90048
Tel: 310-423-5884
Fax: 310-423-0231
bruce.gewertz@cshs.org

Kay R. Goshima, M.D.
(Active Member)
University Medical Center
1501 N. Campbell Avenue, Rm 4402
PO Box 245072
Tucson, AZ 85724
Tel: 520-626-6670
Fax: 520-626-4008
goshimakay@gmail.com;
robina@email.arizona.edu

Kathleen D. Gibson, M.D.
(Active Member)
Lake Washington Vascular, PLLC
1135 116th Avenue NE, Suite 305
Bellevue, WA 98004
Tel: 425-453-1772
Fax: 425-453-0603
drgibson@lkvw.com

Wayne S. Gradman, M.D.
(Senior Member)
2080 Century Park East #803
Los Angeles, CA 90067
Tel: 310-710-6072
Fax: 310-277-4868
wayne@gradman.com

Jerry Goldstone, M.D. (Retired)
1291 Stanyan Street
San Francisco, CA 94117
Tel: 216-314-3121
jgoldst77@gmail.com

Marlene Grenon, M.D.
(Active Member)
Univ of California, San Francisco-SFVAMC
4150 Clement Street, #112G
San Francisco, CA 94121
Tel: 415-750-2115
Fax: 415-750-2181
marlene.grenon@ucsfmedctr.org

Greg R. Goodman, M.D.
(Active Member)
Mountain Medical Physician Specialists
5323 South Woodrow, Suite 102
Murray, UT 84107
Tel: 801-713-1010
Fax: 801-713-0665
greg.goodman@mtnmedical.com

Douglas P. Grey, M.D. (Retired)
2 Mount Tiburon Road
Tiburon, CA 94920
Tel: 415-608-1007
dgrey@aol.com
2018 MEMBERSHIP continued

Eugene C. Groeger, M.D.
(Senior Member)
2250 Hayes St., Ste. 302
San Francisco, CA 94117
Tel: 415-797-2301
Fax: 415-239-2317
genegroeger@gmail.com

Vincent J. Guzzetta, M.D.
(Senior Member)
6719 Alvarado Road, #303
San Diego, CA 92120
Tel: 619-286-9311
Fax: 619-286-0619
vincenrg@vascularsandiego.com

Albert D. Hall, M.D. (Retired)
22 South Ridgewood Road
Kentfield, CA 94904
Tel: 415-461-9409
Fax: 415-461-0535
albert.hall@ucsf.edu

Sung W. Ham

E. John Harris, Jr., M.D.
(Active Member)
Stanford
300 Pasteur Drive, H3641
Stanford, CA 94305-5642
Tel: 650-723-8648
Fax: 650-498-6044
edjohn@stanford.edu

Timothy R.S. Harward, M.D.
(Active Member)
Vascular Intervention Specialists
1140 West La Veta, Suite 850
Orange, CA 92868
Tel: 714-560-4450
Fax: 714-560-4455
califbluedevil@msn.com

Thomas Hatsukami, M.D.
(Active Member)
Harborview Medical Center
325 Ninth Avenue, Box 359796
Seattle, WA 98104
Tel: 206-744-8041
tomhat@uw.edu

Nasim Hedayati, M.D.
(Active Member)
UC Davis Medical Center
4860 Y Street, Ste. 3400
Sacramento, CA 95817
Tel: 916-734-2022
Fax: 916-734-2026
nhedayati@ucdavis.edu

Robert W. Harris, M.D. (Retired)
29141 Gimpl Hill Road
Eugene, OR 97402
Tel: 541-338-9903
bobbonns@aol.com
Bradley B. Hill, M.D.
(Active Member)
Kaiser Permanente Santa Clara
2946 Forbes Avenue
Santa Clara, CA 95051
Tel: 408-246-6337
Fax: 408-246-6337
bhill99@me.com

Jade S. Hiramoto, M.D.
(Active Member)
University of California, San Francisco
400 Parnassus Ave, Room A-581, Box 0222
San Francisco, CA 94143
Tel: 415-353-4366
Fax: 415-353-4370
jade.hiramoto@ucsf.edu

Pei Jackie Ho, M.D.
(Active Member)
Yong Loo Lin School of Medicine, NUS
202 Kim Seng Road
Unit 34-06
Singapore, 239496
Tel: 659-722-3182
jachp77@yahoo.com.hk

Kelley D. Hodgkiss-Harlow, M.D.
(Active Member)
Kaiser Foundation Hospital, San Diego
4647 Zion Avenue
San Diego, CA 92120
Tel: 619-528-5512
kelly.d.hodgkiss-harlow@kp.org

James W. Holcroft, M.D. (Retired)
UCDMC/Dept. of Surgery
2221 Stockton Blvd., 3rd Floor
Sacramento, CA 95817
Tel: 916-734-3779
Fax: 916-734-3951
james.holcroft@ucdmc.ucdavis.edu

H. Whitton Hollis, Jr., M.D. (Retired)
155573 E. Prenctice Lane
Centennial, CO 80015-4262
Tel: 303-810-9299
hwhollis1@comcast.net

G. Allen Holloway, Jr., M.D. (Adjunct Member)
Maricopa Medical Center
2601 E. Roosevelt Street
Phoenix, AZ 85008
Tel: 602-344-5750
Fax: 602-344-5749
lzrdoc@yahoo.com
Douglas B. Hood, M.D.
(associate member)
SIU School of Medicine
PO Box 19638
Springfield, IL 62794
Tel: 217-545-8444
dhood@siumed.edu

York N. Hsiang, M.D.
(active member)
UBC
510-943 West Broadway
Vancouver, BC
Canada V5Z 1K3
Tel: 604-876-5882
Fax: 604-876-8085
ynhsiang@yahoo.ca

Misty D. Humphries, M.D.
(active member)
University of California Davis Medical Center
4860 Y St., Ste. 3400
Sacramento, CA 958178
Tel: 916-734-2024
Fax: 9160-734-2026
mdhumphries@ucdavis.edu

Glenn C. Hunter, M.D.
(retired)
5433E Friess Dr.
Scottsdale, AZ 85254
Tel: 520-300-1246
glenchnuntermd@gmail.com

Daniel M. Ihnat, M.D.
(active member)
Minneapolis VAMC
1 Veterans Drive
Mail code 127
Minneapolis, MN 55417
Tel: 612-467-4239
Fax: 612-725-2227
dihnat@gmail.com

Toshio Inahara, M.D. (retired)
1115 SW Summit View Drive
Portland, OR 97225
Tel: 503-297-6817
ctinahara@comcast.net

Michael D. Ingegno, M.D.
(active member)
Sutter Health
13851 East 14th Street, Suite 202
San Leandro, CA 94578
Tel: 510-357-4006
Fax: 510-347-4712
mdivasc@aol.com

M. Alex Jacocks, M.D. (retired)
3409 Hickory Ridge
Edmond, OK 73013
Tel: 405-627-7509
alexjacobks@gmail.com
Omid Jazaeri, M.D. (Active Member)
University of Colorado, Denver
12631 E. 17th Ave., Mail Stop C312
Aurora, CO 80045
Tel: 303-724-2690
Fax: 303-724-2693
omid.jazaeri@ucdenver.edu

Juan Carlos Jimenez, M.D. (Active Member)
UCLA
200 Medical Plaza, Suite 510-6
Los Angeles, CA 91302
Tel: 310-206-1786
Fax: 310-206-8382
jcjimene@gmail.com

Kaj H. Johansen, M.D. (Senior Member)
The Polyclinic Vascular Surgery
600 Broadway #112
Seattle, WA 98122
Tel: 206-320-3100
Fax: 206-320-3188
kaj.johansen@swedish.org

Christopher G. Johnnides, M.D. (Active Member)
Franklin Medical Center
Franklin Medical Bldg, 2045
Franklin Street
Denver, CO 80245
Tel: 303-764-5563
Fax: 303-831-3741
christopher.g.johnnides@kp.org

Darrell N. Jones, Ph.D. (Adjunct Member)
19948 E. Union Drive
Centennial, CO 80015
Tel: 303-910-2901
darrell.jones@ucdenver.edu

Nii-Kabu Kabutey, M.D. (Active Member)
University of California, Irvine
333 City Blvd, West, Ste. 1600
Orange, CA 92868
Tel: 714-456-5453
nkabutey@uci.edu

Nikhil Kansal, M.D. (Associate Member)
St. Elizabeth’s Medical Center
32 Garrison Street #40-505
Boston, MA 02116
Tel: 617-779-6524
Fax: 617-779-6786
nikhil.kansal@steward.org
Mark M. Kartchner, M.D.
(Retired)
1951 N. Wilmot Road, Suite 2
Tucson, AZ 85712-8000

Tony Katras, M.D.
(Active Member)
Tripler Army Medical Center
2nd Floor Vascular Surgery
1 Jarrett White Road
Honolulu, HI 96859
Tel: 808-433-5228
katras@hawaii.edu

Steven Katz, M.D. (Senior Member)
USC Vascular Surgery
625 S. Fair Oaks
Suite 400
Pasadena, CA 91105
Tel: 626-792-1211
Fax: 626-792-3144
skatz@med.usc.edu

Andris Kazmers, M.D.
(Associate Member)
Petoskey Surgeons PC
521 Monroe Street
Petoskey, MI 48770-2266
Tel: 231-348-9129
Fax: 231-348-1074
akazmers@excite.com

Dwight C. Kellicut, M.D.
(Active Member)
Tripler Army Medical Center
1 Jarrett White Rd, 2nd Floor Vasc Surgery
Honolulu, HI 96859
Tel: 808-433-3463
dwight.kellicut@us.army.mil

Daniel V. Kinikini, M.D.
(Active Member)
University of Utah, School of Medicine
452 Maryfield Drive
Salt Lake City, UT 84108
Tel: 801-440-8601
Fax: 801-581-3433
daniel.kinikini@hsc.utah.edu

Robert L. Kistner, M.D. (Retired)
Kistner Vein Clinic
848 S. Beretania Street, #307
Honolulu, HI 96813-2551
Tel: 808-532-8346
Fax: 808-532-2240
rlk@kistnerveinclinic.com

Stanley R. Klein, M.D.
(Associate Member)
Harbor/UCLA Medical Center
1000 West Carson Street, Box 15
Torrance, CA 90509
Tel: 310-222-2795
Fax: 310-328-6079
sklein@ucla.edu
Ted R. Kohler, M.D.
(Senior Member)
University of Washington VAMC
Box 358280
1660 South Columbian Way
Seattle, WA 98108-8280
Tel: 206-764-2245
Fax: 206-764-2529
kohler@post.harvard.edu

Larry W. Kraiss, M.D.
(Active Member)
University of Utah
30 N. 1900 East, Rm 3C344
Salt Lake City, UT 84132
Tel: 801-581-8301
Fax: 801-581-3433
larry.kraiss@hsc.utah.edu

Stephen M. Kubaska, III, M.D.
(Active Member)
Southern California Vascular Associates, Inc.
1211 West LaPalma Avenue, Suite 505
Anaheim, CA 92801
Tel: 714-778-1032
Fax: 714-778-5634
smkubaska@gmail.com

Gregory J. Landry, M.D.
(Active Member)
Oregon Health Sciences University
3181 SW Sam Jackson Park Road
Portland, OR 97201-3098
Tel: 503-494-7593
Fax: 503-494-4324
landryg@ohsu.edu

John S. Lane, M.D., FACS
(Active Member)
UC San Diego, Sulpizio Cardiovascular Center
9434 Medical Center Drive
Mail code 7403
UCSD Vascular Surgery
La Jolla, CA 92037-1300
Tel: 858-657-7404
Fax: 858-657-5033
j1lane@ucsd.edu

Mark Langsfeld, M.D.
(Active Member)
1 University of New Mexico
MSC10 5610
Albuquerque, NM 87131-0001
Tel: 505-272-5850
Fax: 505-272-4851
mlangsfeld@salud.unm.edu
2018 MEMBERSHIP continued

George S. Lavenson, Jr., M.D.
(Retired)
50 Puu Anoano, #2801
Lahaina, HI 96761
Tel: 808-667-9300
Fax: 808-661-0040
glavenson@aol.com

Peter F. Lawrence, M.D.
(Senior Member)
David Geffen School of Medicine at UCLA
200 Medical Plaza, Ste. 526 Box 956908
Los Angeles, CA 90095-6908
Tel: 310-267-0182
Fax: 310-267-0189
pflawrence@mednet.ucla.edu

Raymond Wai Mun Lee, M.D.
(Active Member)
MemorialCare Health System
82 Puuhonu Place, Suite 208
Hilo, HI 96720
Tel: 808-935-7765
Fax: 808-969-7990
kjnrwlee@aol.com

Eugene S. Lee, M.D.
(Active Member)
University of California, Davis
10535 Hospital Way, SAC-112
Mather, CA 95655
Tel: 916-843-7174
eugeness.lee@ucdmc.ucdavis.edu

Jason T. Lee, M.D.
(Active Member)
Stanford University Medical Center
300 Pasteur Drive, Suite H3600
Stanford, CA 94305
Tel: 650-724-8292
Fax: 650-498-6044
jtlee@stanford.edu

George Lee

William Ming Lee, M.D.
(Active Member)
Keck Medical Center, University of Southern California, Dept. of Surgery
1520 San Pablo St., Ste. 4300
Los Angeles, CA 90033
Tel: 323-442-5988
Fax: 323-442-6835
wlee@surgery.usc.edu

Phillip M. Levin, M.D. (Retired)
8631 West Third Street, Suite 615E
Los Angeles, CA 90048
Tel: 310-652-8132
Fax: 316-659-3815
vscpmlevin@aol.com

Sheldon Levin, M.D. (Retired)
3838 California Street, Suite 412
San Francisco, CA 94118
Tel: 415-221-1177
Fax: 415-752-0550
dodoshel72@gmail.com
Edward F. Levine, M.D. (Retired)
18951 Wildwood Circle
Villa Park, CA 92861
Tel: 714-778-1032
Fax: 714-778-5634

Timothy K. Liem, M.D.
(Active Member)
Oregon Health & Science University
3181 SW Sam Jackson Park Road,
Vasc Surg, OP-11
Portland, OR 97221
Tel: 503-494-7593
liemt@ohsu.edu

Richard A. Lim, M.D. (Retired)
977 Via Los Padres
Santa Barbara, CA 93111
Tel: 805-964-4457

Robert C. Lim, M.D. (Retired)
University of CA, San Francisco
505 Parnassus Avenue, Box 0780
San Francisco, CA 94114-0780
Tel: 415-353-1590
Fax: 415-353-1579
robert.lim@ucsfmedctr.org

Stephanie C. Lin, M.D.
(Active Member)
Peninsula Medical Clinic
1501 Trousdale Drive
Burlingame, CA 94010
Tel: 650-652-8787
Fax: 650-652-8770
lins3@pamf.org

John B. Long, M.D. (Retired)
3838 California St., Suite 612
San Francisco, CA 94118
Tel: 415-221-7056
Fax: 415-221-7058
drjlong@aol.com

Sonni Longson, RPVI

Rachel Lundgren, M.D.

Herbert I. Machleder, M.D.
(Retired)
UCLA Center for the Health Sciences
10833 LeConte Avenue
Los Angeles, CA 90024-6904
Tel: 310-825-7433

James M. Malone, M.D. (Retired)
9101 W Airport Road
Willcox, AZ 85643
Tel: 602-509-7644
Fax: 480-513-8748
jmalonemd@cs.com
2018 MEMBERSHIP continued

John M. Marek, M.D.
(Active Member)
University of New Mexico School of Medicine, Division of Vascular Surg
1 University of New Mexico, MSC10 5610
Albuquerque, NM 87813-0001
Tel: 505-272-5850
Fax: 505-272-4851
jmarek@salud.unm.edu

Elna M. Masuda, M.D.
(Active Member)
Straub Clinic And Hospital
927 Ikena Circle
Honolulu, HI 96821
Tel: 808-377-1347
Fax: 808-522-4523
EMasuda@straub.net

Brian T. Matteson, M.D.
(Active Member)
St. Luke’s Cardiothoracic and Vascular Associates
333 North 1st St., Ste. 280
Boise, ID 83702
Tel: 208-345-6545
bmattheson@slhs.org

P. Michael McCart, M.D. (Retired)
75-315 Morningstar Drive
Indian Wells, CA 92210
Tel: 760-837-3740
Fax: 760-837-3750
mmccart@earthlink.net

Kenneth E. McIntyre, Jr., M.D.
(Retired)
University of Nevada School of Medicine
2693 Vikings Cove Lane
Las Vegas, NV 89117
Tel: 702-671-2289
Fax: 702-385-9399
kennydallasmac@yahoo.com

Thomas O. McNamara, M.D.
(Adjunct Member)
UCLA Center for the Health Sciences
10833 Le Conte Avenue
Los Angeles, CA 90024
Tel: 310-825-6941

John Thomas Mehigan, M.D.
(Senior Member)
1330 University Drive, #91
Menlo Park, CA 94025
Tel: 510-248-1420
Fax: 650-323-9130
jtmehiganmd@aol.com

Mark H. Meissner, M.D.
(Active Member)
University of Washington
1959 NE Pacific Street, Surgery, PO Box 356410
Seattle, WA 98195-6410
Tel: 206-221-7047
Fax: 206-616-7495
meissner@u.washington.edu
Matthew W. Mell, M.D.
(Active Member)
Stanford University School of Medicine
300 Pasteur Drive, Suite H3627
Stanford, CA 94305
Tel: 650-723-4322
Fax: 650-498-6044
mwmell@stanford.edu

Robert F. Merchant, Jr., M.D.
(Senior Member)
Reno Vein Clinic
10685 Professional Circle, Ste. B
Reno, NV 89521
Tel: 775-329-3100
Fax: 775-329-3199
doc@renoveinclinic.com

Steven W. Merrell, M.D.
(Active Member)
Mountain Medical
5323 South Woodrow Street, Suite 102
Salt Lake City, UT 84107
Tel: 801-713-1010
Fax: 801-713-0665
arteriesrus@gmail.com

Louis M. Messina, M.D.
(Associate Member)
Umass Memorial Hospital
55 Lake Avenue, University Campus
Worcester, MA 01655
Tel: 508-856-5599
Fax: 508-856-8329
messinal@ummhc.org

D. Craig Miller, M.D.
(Senior Member)
Falk CV Research Center
Stanford University Medical School
Stanford, CA 94305-5407
Tel: 650-725-3826
Fax: 650-725-3846
dcm@stanford.edu

Joseph L. Mills, M.D.
(Active Member)
Baylor College of Medicine
Michael E. DeBakey Dept. of Surgery, 1 Baylor Plaza
Houston, TX 77030
Tel: 713-798-4951
joseph.mills@bcm.edu

Erica L. Mitchell, M.D.
(Active Member)
Oregon Health & Science University
3181 SW Sam Jackson Park Rd, OP11
Portland, OR 97239
Tel: 503-494-7593
Fax: 503-494-4324
mitcheer@ohsu.edu
R. Scott Mitchell, M.D. (Retired)
CVRC Stanford University Medical Center
300 Pasteur Drive, 2nd Floor
Stanford, CA 94305-5407
Tel: 650-723-5823
Fax: 650-725-3846
rsmitch@stanford.edu

Gregory L. Moneta, M.D.
(Active Member)
Oregon Health Sciences Center
3181 SW Sam Jackson Park Road
Portland, OR 97201
Tel: 503-494-7593
Fax: 503-494-4324
monetag@ohsu.edu

Wesley S. Moore, M.D. (Retired)
UCLA Center for the Health Sciences
200 UCLA Medical Plaza, Suite 510-6
Los Angeles, CA 90095
Tel: 310-825-9641
Fax: 310-794-7648
wmoore@mednet.ucla.edu

Mark D. Morasch, M.D.
(Active Member)
Billings Clinic
801 North 29th Street, P. O. Box 37000
Billings, MT 59107-7000
Tel: 406-435-8272
Fax: 406-238-2159
mdmorasch@gmail.com

Michelle T. Mueller, M.D. (Active Member)
University of Utah
30 N 1900 E #3C344
Salt Lake City, UT 84132
Tel: 801-585-1425
Fax: 801-581-3433
michelle.mueller@hsc.utah.edu

Stephen P. Murray, M.D.
(Active Member)
Providence Vascular Institute
122 West 7th, #420
Spokane, WA 99204
Tel: 509-626-9440
Fax: 509-626-9475
stephen.murray@providence.org
2018 MEMBERSHIP continued

Scott E. Musicant, M.D.
(Active Member)
Vascular Associates of San Diego
8860 Center Drive, Suite 450
La Mesa, CA 91942
Tel: 619-460-6200
Fax: 619-460-6262
scottm@vascularsandiego.com;
semusicant@yahoo.com

Ryan D. Nachreiner, M.D.
(Active Member)
Inland Vascular Institute
122 W 7th Avenue, Suite 420
Spokane, WA 99204
Tel: 509-455-3131
Fax: 509-625-1888
ryan.nachreiner@providence.org

Takashi Nakamura, M.D.
(Active Member)
Osaka Rosai Hospital
1179-3 Nagasone-cho, Kita-ku
Sakai, Osaka 591-8025
takashin@mvd.biglobe.ne.jp

Mark R. Nehler, M.D.
(Active Member)
UCD
12631 East 17th Avenue, Mailstop C312
Aurora, CO 80045
Tel: 303-724-2690
Fax: 303-724-2693
Mark.Nehler@ucdenver.edu

Nicolas A. Nelken, M.D.
(Active Member)
Kaiser Hospital Moanalua
3288 Moanalua Road
Honolulu, HI 96819
Tel: 808-432-8217
Fax: 808-432-8356
nicolas.a.nelken@kp.org

Daniel F. Neuzil, M.D.
(Associate Member)
Virginia Mason Hospital
1100 Ninth Ave.
Seattle, WA 98101
Tel: 206-223-6637
Fax: 206-341-0049

Robert E. Noll, M.D.
(Active Member)
UC Davis Health
3255 Conquistador Way
Davis, CA 95618
Tel: 504-940-4157
nollfamily.davis@comcast.net

Robert W. Oblath, M.D. (Retired)
18370 Burbank Boulevard, #670
Tarzana, CA 91356
Tel: 818-774-1771
Fax: 818-343-1738
slicendice@sbcglobal.net
Christian J Ochoa, M.D.
(Active Member)
Keck Medical Center of USC
625 South Fair Oaks Ave, Ste. 400
Pasadena, CA 91105
Tel: 626-792-1211
cchoa@surgery.usc.edu

George Papanicolaou, M.D.
(Active Member)
Kaiser Permanente Sacramento Medical Center
1026 La Grande Avenue
Napa, CA 94558
Tel: 707-651-3470
Fax: 707-651-3484
george.papanicolaou@kp.org

Cornelius Olcott, IV, M.D.
(Retired)
25 Brookbank Road
Orinda, CA 94563
Tel: 650-303-6120
olcott@stanford.edu

Lamont D. Paxton, M.D.
(Active Member)
General Vascular Surgery Medical Group, Inc.
13851 E 14th Street, Suite 202
San Leandro, CA 94578
Tel: 510-357-4006
Fax: 510-351-3423
ldpaxtonmd@comcast.net

Robert S. Ozeran, M.D. (Retired)
1979 Sage Grouse Lane
Lewiston, ID 83501
Tel: 208-743-3252

Xianmang Pan, M.D.
(Adjunct Member)
University of California,
San Francisco
501 43rd Ave #2
San Francisco, CA 94121
Tel: 415-666-3587
Fax: 415-750-2181
xmpan61@yahoo.com

William H. Pearce, M.D.
(Associate Member)
Northwestern Medical Faculty Foundation
676 N St. Clair Street, Suite 650
Chicago, IL 60611
Tel: 312-926-7775
Fax: 312-695-4955
wpearce@nmh.org
James J. Peck, M.D. (Retired)
Oregon Medical Board
1500 SW 1st Avenue, 620 Crown Plaza
Portland, OR 97201-5847
Tel: 503-679-2988
Fax: 503-673-2669
jamesjpeck@gmail.com

Reagan W. Quan, M.D.
(Associate Member)
850 Upland Road
York, PA 17403
Tel: 703-789-3034
Fax: 717-851-1665
rwquan@icloud.com

Rhonda C. Quick, M.D.
(Active Member)
Carondelet Heart & Vascular Institute Physicians
1815 W. St. Mary’s Road
Tucson, AZ 85745
Tel: 520-628-1400
Fax: 520-628-4863
rqbyt@comcast.net

Terence M. Quigley, M.D.
(Active Member)
Northwest Surgical Specialists
1560 N. 115th Street, #102
Seattle, WA 98133
Tel: 206-363-2882
Fax: 206-363-4172
tquigley@nwhsea.org

William J. Quinones-Baldrich, M.D. (Active Member)
UCLA Center for the Health Sciences
200 Medical Plaza Suite 510-3
Los Angeles, CA 90095
Tel: 310-825-7032
Fax: 310-206-2592
wquinones@mednet.ucla.edu

Elina Quiroga, M.D., FACS
(Active Member)
University of Washington
325 9th Ave., Box 359908
Seattle, WA 98040
Tel: 206-744-3538
Fax: 206-744-6794
elinaq@uw.edu

Gerald W. Rainer, M.D. (Retired)
2552 East Alameda, #48
Denver, CO 80209
Tel: 303-601-0532
Fax: 303-837-7115
rainerg@exempla.org

Edmond J. Raker, M.D. (Retired)
Virginia Mason Clinic
1100 Ninth Avenue
Seattle, WA 98111
Tel: 206-223-6950
Fax: 206-625-7245
gtsejr@vmmc.org
Joseph H. Rapp, M.D. (Retired)
San Francisco VA Medical Center
4150 Clement
San Francisco, CA 94121
Tel: 415-750-2115
Fax: 415-750-2181
joseph.rapp@ucsf.edu

Sunil Rayan, M.D.
(Active Member)
Scripps Clinic and Green Hospital
9850 Genesee Ave#560
La Jolla, CA 92037
Tel: 858-452-0306
Fax: 858-452-1421
srayan@sbcglobal.net

Thomas F. Rehring, M.D., FACS
(Active Member)
Franklin Medical Center
2045 Franklin Street, 3rd floor
Denver, CO 80205
Tel: 303-861-3688
Fax: 303-831-3741
thomas.f.rehring@kp.org

Linda M. Reilly, M.D.
(Senior Member)
UCSF Division of Vascular Surgery
400 Parnassus Avenue, A-581,
Box 0222
San Francisco, CA 94143-0222
Tel: 415-353-4366
Fax: 415-353-4370
Linda.Reilly2@ucsf.edu

David A. Rigberg, M.D.
(Active Member)
UCLA
200 Medical Plaza, Ste 510-6,
690824
Los Angeles, CA 90095
Tel: 310-206-5594
Fax: 310-267-0189
drigberg@mednet.ucla.edu

Adnan Rizvi, M.D.
(Active Member)
Inland Vascular Institute
122 W. 7th Ave, Ste. 420
Spokane, WA 99204
Tel: 509-626-9440
adnan.rizvi@providence.org

Anthony J. Roon, M.D. (Retired)
4014 Mission Beach Road
Marysville, WA 98271
Tel: 360-653-6673
ajrfacs@aol.com

David B. Roos, M.D. (Retired)
7 Canon Place
Greenwood Village, CO 80111-3205
Tel: 303-771-2440
Fax: 303-863-1204
DBandDHROOS@aol.com
John J. Rosental, M.D. (Retired)
1040 Elm Avenue, Suite 303
Long Beach, CA 90813
Tel: 562-436-9645
Fax: 562-436-7119
rosental@att.net

Vincent L. Rowe, M.D.
(Active Member)
Keck School of Medicine at USC
1520 San Pablo Street, Suite 4300
Los Angeles, CA 90033
Tel: 323-442-5951
Fax: 323-442-5735
vincent.rowe@med.usc.edu

Mark R. Sarfati, M.D.
(Active Member)
University of Utah Medical Center
30 N 1900 E #3C344
Salt Lake City, UT 84132
Tel: 801-581-8301
Fax: 801-581-3433
mark.sarfati@hsc.utah.edu

Rajabrata Sarkar, M.D., PhD
(Associate Member)
University of Maryland
22 S Greene Street, Suite S10B11
Baltimore, MD 21201
Tel: 410-328-5840
Fax: 410-328-0717
Rsarkar@smail.umaryland.edu

Peter A. Schneider, M.D.
(Active Member)
Kaiser
4644 Aukai Ave
Honolulu, HI 96816
Tel: 808-432-8389
Fax: 808-432-8356
peterschneidermd@aol.com

John A. Schwartz, M.D. (Retired)
143 Mariposa Terrace
Medford, OR 97504
Tel: 541-733-8153
jasmd@charter.net

Robert G. Scribner, M.D.
(Senior Member)
1800 Sullivan Avenue, Suite 308
Daly City, CA 94015
Tel: 650-755-1132
Fax: 650-755-1308
robertscribner4@gmail.com

Marc M. Sedwitz, M.D.
(Active Member)
Pacific Coast Vascular & General Surgery Inc
9850 Genesse, Suite 560
La Jolla, CA 92037-1213
Tel: 858-452-0306
Sherene Shalhub, M.D.
(Active Member)
University of Washington Medical Center
1959 NE Pacific St., Box 356410
Seattle, WA 98195
Tel: 206-598-1059
Fax: 206-598-1466
shalhub@uw.edu

Qun Shi, M.D. (Adjunct Member)
12744 20th Ave NE
Seattle, WA 98125
Tel: 206-365-3732
qun.shi@outlook.com

Susanna H. Shin, M.D.
(Active Member)
University of Washington Regional Vascular Center
325 Ninth Ave, Box 359908
Seattle, WA 98104
Tel: 206-598-1059
shshin9@uw.edu

Matthew J. Sideman, M.D.
(Associate Member)
University of Texas Health Science Center
7703 Floyd Curl Drive
San Antonio, TX 78229
Tel: 210-567-5715
Fax: 210-567-1762
sideman@uthscsa.edu

Niten Singh, M.D. (Active Member)
University of Washington
Box 359908, 325 Ninth Avenue
Seattle, WA 98104
Tel: 206-744-8025
Fax: 206-681-6019
singhn2@uw.edu

Robert J. Stallone, M.D. (Retired)
2999 Regent Street, Suite 622
Berkeley, CA 94705
Tel: 510-451-9192
Fax: 510-451-3591
stallonemd@yahoo.com

Benjamin W. Starnes, M.D.
(Active Member)
Harborview Medical Center
325 Ninth Avenue, Box 359908
Seattle, WA 98104
Tel: 206-744-3370
Fax: 206-744-6794
starnes@uw.edu
William M. Stone, M.D.
(Active Member)
Mayo Clinic Arizona
5777 E Mayo Boulevard
Phoenix, AZ 85054
Tel: 480-342-2868
Fax: 480-342-2866
stone.william@mayo.edu

Swee Lian Tan, M.D.
(Active Member)
Vascular & Surgical Care Northwest
600 Broadway, Ste. 112
Seattle, WA 98122
Tel: 206-420-3119
Fax: 206-453-5912
tan@vscnw.com

Ronald J. Stoney, M.D. (Retired)
1520 Hayne Road
Hillborough, CA 94010
Tel: 650-342-1300
Fax: 650-342-1324
rstoneymd@earthlink.net

Gale L. Tang, M.D.
(Active Member)
VA Puget Sound Health Care System
Surgical Services (12)
1660 S. Columbian Way
Seattle, WA 98108
Tel: 206-277-3722
Fax: 206-277-2529
gtang@uw.edu

Matthew P. Sweet, M.D.
(Active Member)
University of Washington Medical Center
1959 NE Pacific St., Box 356410
Seattle, WA 98195
Tel: 206-598-1154
Fax: 206-598-1466
mpsweet@uw.edu

Roy L. Tawes, Jr., M.D. (Retired)
7511 Mariposa Grande Dr
Scottsdale, AZ 85255-3479
Tel: 480-595-5136
Fax: 480-595-8309
rtawes@cox.net

Peter M. Taft, M.D. (Retired)
Kaiser Foundation Hospital
4647 Zion Avenue
San Diego, CA 92120
Tel: 619-528-5522
Fax: 619-528-3777
David C. Taylor, M.D.
(Active Member)
Gordon and Leslie Diamond Center, Vancouver Hosp
2775 Laurel Street, Room 4213
Vancouver, BC, V5Z 1M9
Canada
Tel: 604-875-5540
Fax: 604-875-5542
dctaylor@interchange.ubc.ca

Nam T. Tran, M.D.
(Active Member)
Harborview Medical Center
325 Ninth Avenue
Seattle, WA 98104
Tel: 206-744-8041
Fax: 206-744-6794
nam@uw.edu

Gordan and Leslie Diamond Center,
Vancouver Hosp
2775 Laurel Street, Room 4213
Vancouver, BC, V5Z 1M9
Canada
Tel: 604-875-5540
Fax: 604-875-5542
dctaylor@interchange.ubc.ca

Lloyd M. Taylor, Jr., M.D. (Retired)
0340 SW Idaho Street
Portland, OR 97239
Tel: 503-929-3369

Theodore H. Teruya, M.D.
(Active Member)
VA Loma Linda
25612 Barton Rd #110
Loma Linda, CA 92354
Tel: 808-384-9048
Fax: 909-999-7125
tedmedtx@yahoo.com

Gerald S. Treiman, M.D.
(Active Member)
VASLC HSC
500 Foothill Drive
Salt Lake City, UT 84132
Tel: 801-584-1239
Fax: 801-584-2587
gstreiman@earthlink.net

Richard L. Treiman, M.D.
(Retired)
912 No. Beverly Drive
Beverly Hills, CA 90210
Tel: 310-274-6978
Fax: 310-274-3801
rtreiman@sbcglobal.net

Charles W. Van Way, III, M.D.
(Retired)
Shock Trauma Research Center
2411 Holmes Street, MG-C01
Kansas City, MO 64108
Tel: 816-235-2553
vanwayc@umkc.edu

Gustavo A. Torres, M.D.
(Active Member)
Vascular and Endovascular Surgery
120 S. Montobollo Blvd.
Montobollo, CA 90640
Tel: 323-869-0871
Fax: 323-869-0875
lavasinc@gmail.com
Shant M. Vartanian, M.D.
(Active Member)
University of California San Francisco
400 Parnassus Ave., A-581
San Francisco, CA 94143
Tel: 415-353-4366
Fax: 415-353-4370
shant.vartanian@ucsf.edu

Fred A. Weaver, M.D.
(Active Member)
Division Vascular Surgery & Endovascular Therapy
1520 San Pablo Street, Suite 4300
Los Angeles, CA 90033
Tel: 323-442-6835
Fax: 323-442-5735
fred.weaver@med.usc.edu

Willis H. Wagner, M.D.
(Active Member)
Cedars-Sinai Medical Center
8631 West Third Street, Suite 615E
Los Angeles, CA 90048
Tel: 310-652-8132
Fax: 310-659-3815
wagnerwh@cshs.org

Ronald Webb, M.D. (Retired)
3672 Happy Road
Lafayette, CA 94549
rwebb3672@aol.com

C. Allen Wall, M.D. (Retired)
St. Mary’s Hospital & Medical Center
290 Santa Clara Avenue
San Francisco, CA 94127
Tel: 415-661-2012
Fax: 415-661-8423

Eric S. Weinstein, M.D.
(Active Member)
Colorado Cardiovascular Surgical Associates
950 E. Harvard Ave., #550
Denver, CO 80210
Tel: 303-778-6527
Fax: 303-733-1288
eweinstein01@yahoo.com

Alex Westerband, M.D.
(Active Member)
Northwest Allied Physicians
6060 N. Fountain Plaza Drive #270
Tucson, AZ 85704
Tel: 520-229-2578
Fax: 520-229-2561
alexwesterband01@gmail.com

John Wang

Jim Watson, M.D. (Retired)
Need new address
Rodney A. White, M.D.
(Senior Member)
Harbor-UCLA Medical Center
1000 West Carson Street
Torrance, CA 90509-9823
Tel: 310-222-2704
Fax: 310-787-1889
rawhite@UCLA.edu

Osvaldo J. Yano, M.D.
(Active Member)
Kaiser Permanente
2238 Geary Blvd., 2nd floor
San Francisco, CA 94115
Tel: 415-833-3383
Fax: 415-833-3112
osvaldo.yano@kp.org

Samuel Eric Wilson, M.D.
(Senior Member)
UCI Medical Center
1436 Via Castilla
Palos Verdes Estates, CA 90274
Tel: 714-456-7246
Fax: 714-456-8205
wilsonse@uci.edu

Richard A. Yeager, M.D.
(Senior Member)
Portland VAMC
P.O. Box 1034
Portland, OR 97207
Tel: 503-220-8262
Fax: 503-220-3415
richard.yeager@med.va.gov

Karen Woo, M.D.,MS,FACS
(Active Member)
UCLA
1520 San Pablo Street Suite 4300
Los Angeles, CA 90033
Tel: 310-497-7159
Fax: 310-268-4967
kwoo@mednet.ucla.edu

Albert E. Yellin, M.D. (Retired)
59-415 Kawowo Road
Haleiwa, HI 96712
Tel: 808-638-0510
aeyellin@hawaii.rr.com

Edward Baylor Woodward, M.D.
(Active Member)
The Permanente Medical Group Inc.
3600 Broadway, 3rd Floor
Department of Surgery
Walnut Creek, CA 94611
Tel: 925-925-7206
kompressormac@mac.com

Christopher K. Zarins, M.D.
(Retired)
Stanford University Medical Center
300 Pasteur Drive, H3642
Palo Alto, CA 94305-5642
Tel: 650-725-7830
Fax: 650-498-6044
Wei Zhou, M.D. (Active Member)
University of Arizona
Division of Vascular Surgery
1501 N. Campbell Avenue, #4402
Tucson, AZ 85724
Tel: 520-626-6598
Fax: 520-626-4008
zhouw@surgery.arizona.edu

R. Eugene Zierler, M.D. (Senior Member)
University of Washington
Dept. of Surgery
Box 356410
Seattle, WA 98195-6410
Tel: 206-543-3095
Fax: 206-616-7495
gzierler@u.washington.edu
MEMBER UPDATE FORM

Help the Western Vascular Society keep your membership information current. We require an email address from all members for communication purposes, as well as your preferred mailing address.

Please return completed form to the WVS Registration Desk or fax to the Administrative Office at 360-261-6077 or email at surgicalcs@gmail.com.

MEMBER INFORMATION (REQUIRED FOR ALL MEMBERS)

NAME

INSTITUTION CITY STATE

EMAIL ADDRESS

MAILING INFORMATION

Preferred Mailing Address: ☐ Work ☐ Home

Please provide preferred mailing address below:

MAILING ADDRESS

MAILING ADDRESS CONTINUED

CITY STATE POSTAL CODE COUNTRY

DAYTIME TELEPHONE

Thank you!
CONTACT INFORMATION

Western Vascular Society
1411 5th St.
Anacortes, WA 98221

Telephone: 360-420-6906
Fax: 360-261-6077
Email: surgicalcs@gmail.com
Web: www.surgicalcs.com
The Western Vascular Society wishes to thank the following companies for their educational grants in support of the 33rd Annual Meeting.

Cook Medical

Gore & Associates, Inc.

The Western Vascular Society wishes to thank the following companies for sponsorship support of the 33rd Annual Meeting.

Abbott Vascular

Cook Medical

Medtronic

Terumo Aortic

The Western Vascular Society wishes to thank the following companies for exhibiting in support of the 33rd Annual Meeting.

PLATINUM

Cook Medical

Gore & Associates

Medtronic

GOLD

Getinge Group

SILVER

Abbott Vascular

Boston Scientific

CR Bard

Endologix, Inc.

Penumbra

Janssen Pharmaceuticals, Inc.

Shockwave Medical

Silk Road Medical

Terumo Aortic

Vascular Insights